
Contents

3.6 Balancing . 2

3.6.1 Balancing schemes . 2

3.6.2 Balancing the Canonical Binary Tree 4

3.6.3 Previous work . 10

3.6.4 Utility functions . 10

3.6.5 Optimisation . 10

3.6.6 Amortised access time . 12

Bibliography 14

1

2 CONTENTS

3.6 Balancing

An immutable binary tree can be balanced to minimise the time taken to access

the data within it. A number of schemes for balancing binary trees are described

in the literature. This section describes the implementation of a scheme for

balancing the Canonical Binary Tree. The balancing process is independent of

the ADT implemented by the Canonical Binary Tree.

The problem is to adapt a balancing scheme, implemented in an imperative

programming language, so that it can be used to balance the immutable Canonical

Binary Tree. Balancing reduces the average time required to access the data

associated with a leaf. Balancing improves the performance of the priority queue,

deque, map and vector implemented by the ADT by reducing the average access

time of all of the Canonical Binary Tree operations.

The main contribution of this section is the development of an Immutable

Data Structure that separates the performance characteristics of the structure

from the ADT to which it conforms. This section focuses on techniques for

minimising the average access time and the amortised access time of Immutable

Data Structures implemented in imperative programming languages.

3.6.1 Balancing schemes

The Canonical Binary Tree described in the previous section can be balanced

independent of the ADT that it implements.

Figure 3.1 illustrates how the associativity property of the annotator function

permit the topological transformations required to balance the tree regardless of

the ADT that it implements.

A balancing scheme works by implementing a set of balancing invariants.

When the invariants are compromised the tree is restructured so that its topology

conforms to the invariants. Restructuring takes the form of topological transfor-

mations called rotations. A balancing scheme can be characterised by a set of

invariants and a set of rotations. These are combined into a set of cases. Each

case is characterised by a configuration of nodes that violates the invariants.

These nodes are made to conform to the invariants by applying the rotations.

Typically, balancing algorithms restructure the tree during a mutation, guaran-

teeing balancing invariants as post conditions to each mutating function. The

post condition is enforced by applying the checks to each node altered by the

3.6. BALANCING 3

A

A.B

B

(A.B).C

C

((A.B).C).D

D

(a)

A

A.B

B

(A.B).(C.D)

C.D

C D

(b)

B

B.(C.D)

C.D

C D

A.(B.(C.D))

A

(c)

Figure 3.1: The associativity property permits balancing. The mean
number of nodes that are traversed to reach a leaf of the balanced tree (b) is two,
whereas for the unbalanced trees (a) and (c) it is 2.25. The associativity property
of the annotator function ’.’ allows the topology of the tree to be modified, in
order to reduce the average access time, without affecting the functionality of the
ADT being implemented.

mutation.

Many tree balancing schemes are based on B-Trees [BM72]. In these schemes

the invariants and balancing information are expressed in terms of binary B-Tree

composed from the nodes of the binary tree. The B-Tree nodes are referred to

as pseudo-nodes. Each B-Tree pseudo-node contains a number of binary tree

nodes. The maximum number of children of a pseudo-node is referred to as the

order of the B-tree. Nodes in the same pseudo-node are said to be joined by

horizontal edges. Edges between pseudo-nodes are said to be vertical. Balancing

information in the node indicates whether each edge is horizontal or vertical.

Pseudo-nodes can be joined or split by changing the orientation of the edges. A

balancing algorithm joins and splits the B-tree nodes so that the B-tree remains

perfectly balanced. This places a limit on the imbalance of the underlying binary

tree.

A red-black tree is a self balancing binary B-tree of order four. For every

red-black tree there is at least one corresponding 2-4 B-Tree with elements in

the same order. The invariants are described in terms of the colours red and

black. The implementation of an ephemeral red-black tree is described in detail

by Tarjan [GS78]. As a post condition to insertion each node on the path is

examined to ensure that it complies with the invariants. Compromised invariants

4 CONTENTS

are restored by a series of rotations. For each node on the path of an insertion

there are five possible cases. There are six possible cases for each node during a

deletion.

Okasaki describes an immutable implementation of a red-black tree [Oka98]

in the functional programming languages Haskell and ML. The implementation

relies on repeated pattern matching. Each node on the path is compared with

one of the cases and compromised invariants are fixed by applying rotations.

Each case corresponds to a single program line in both functional programming

languages making the implementation both brief and easy to follow.

The C++ STL contains an implementation of a red-black tree in an imperative

programming language [Jos99]. The imperative implementation relies on explicit

testing of each of the cases for each node on the path. Rotations are implemented

by pointer manipulation. As a result the imperative implementation appears

much more involved than the functional implementation. The high number of

cases and the complexity of the rotations makes the implementation of red-black

balancing in an imperative programming language both long winded and opaque.

To apply a balancing scheme to the Canonical Binary Tree the rotations must

be implemented using path copy. This promises to make the implementation even

more unwieldy, so to ease the implementation effort a simpler balancing scheme

than red-black is required.

3.6.2 Balancing the Canonical Binary Tree

This section describes how the Canonical Binary Tree can be balanced using

the AA-tree balancing scheme [And93]. The AA-tree has fewer cases and simpler

rotations making it far simpler to implement than a red-black tree. The rotations

are easily expressed in terms of path copy operations.

An AA-tree is a self balancing binary B-tree of order three. For every AA-

tree there is at least one corresponding 2-3 B-Tree with elements in the same

order. The balancing of ephemeral AA-trees is described in detail by Anderson

[And93]. A 2-3 B-Tree consists of pseudo-nodes containing either one or two

binary tree nodes. Two binary tree nodes joined by a horizontal edge are regarded

as forming a pseudo-node. Restructuring operations implement rotations that

maintain a perfectly balanced 2-3 B-tree. This places a limit on the imbalance of

the underlying binary tree.

Each tree node maintains balancing information in the form of a level number.

3.6. BALANCING 5

A.((B.C).D)
level X+1

A
level X

B
level X-1

C
level X-1

D
level X-1

(B.C).D
level X

B.C
level X

(a)

A.(B.(C.D))
level X+1

A
level X

B
level X-1

C
level X-1

D
level X-1

B.(C.D)
level X

C.D
level X

(b)

Figure 3.2: A skew balancing rotation corrects violations of the invariant
that only right edges are horizontal. Horizontal edges linking the nodes within a
pseudo-node are shown in bold. The level number adjustment is also indicated.
(a) A subtree that violates the invariant because it has a horizontal left edge.
(b) A right rotation transforms the horizontal left edge into a horizontal right
edge.

6 CONTENTS

A.(B.(C.D))
level X

A
level X-1

B
level X-1

C
level X-1

D
level X-1

B.(C.D)
level X

C.D
level X

(a)

(A.B).(C.D)
level X+1

A
level X-1

B
level X-1

C
level X-1

D
level X-1

A.B
level X

C.D
level X

(b)

Figure 3.3: Split rotation corrects violations of the invariant that the largest
pseudo-node has three children. Horizontal edges linking the nodes within a
pseudo-node are shown in bold. The level number adjustment is also indicated.
(a) A subtree that violates the invariant because it forms a pseudo-node with
four children.
(b) A left rotation is performed to transform a pseudo-node with four children
into three pseudo-nodes with two children each. The split balancing rotation
reduces the size of a pseudo-node by elevating the middle node.

3.6. BALANCING 7

0

1

0

1

0

2

1

00

V1

1

2

V0

(a)

 4

 2 2

1
B

1
D

1
E

1
*

(b)

0 1

0 0

1

2

1

00

V1

1

2

V0

(c)

 5

 3 2 2

1
A

1
B

1
D

1
E

1
*

(d)

Figure 3.4: Example of a skew balancing rotation acting on a vector.
(a) A Canonical Binary Tree implementing a vector. The level number of each
node is shown. Vertical edges are dotted. Horizontal edges are bold. The in-
sertion of an element, with a value of A, creates a new version which is shaded.
Insertion without balance creates a horizontal left edge that violates the invariant
that only right edges may be horizontal so a skew balancing rotation is performed.
(b) Version V0 of a vector viewed as a 2-3 B-tree.
(c) The Canonical Binary Tree implementing this vector after inserting the value
A and performing a skew balancing rotation. The skew balancing rotation trans-
forms a potential horizontal left edge into a horizontal right edge.
(d) Version V1 of the vector viewed as a 2-3 B-tree.

8 CONTENTS

0

1

0

1

0

1

0

2

1

00

V1

1

1

2

V0

(a)

 5

 3 2 2

1
A

1
B

1
D

1
E

1
*

(b)

0

1

0

1

0

0

2

1

00

2

V1

1

1

2

V0

(c)

 6 4

 2 2 2

1
A

1
B

1
C

1
D

1
E

1
*

(d)

Figure 3.5: Example of a split balancing rotation acting on a vector.
(a) A Canonical Binary Tree implementing a vector. The level number of each
node is shown. Vertical edges are dotted. Horizontal edges are bold. The in-
sertion of an element, with a value of C, creates a new version which is shaded.
Insertion without balance creates two adjacent horizontal right edges representing
an overly full pseudo-node that violates the invariant that a pseudo node has at
most three children.
(b) Version V0 of a vector viewed as a 2-3 B-tree.
(c) The Canonical Binary Tree implementing this vector after inserting the value
C and performing a skew followed by a split balancing rotation. The split balanc-
ing rotation transforms the potential overly full pseudo-node by raising the level
of the middle node. This creates a horizontal left edge which must be transformed
into a horizontal right edge by a skew rotation.
(d) Version V1 of the vector viewed as a 2-3 B-tree.

3.6. BALANCING 9

This number corresponds to the level of the pseudo-node within the B-Tree. The

root pseudo-node has the highest level number. Pseudo-nodes at the bottom of

the tree are on level 1 and leaves are on level 0. A binary tree edge which connects

nodes with equal level numbers is regarded as a horizontal edge and the nodes

joined by a horizontal edge form a pseudo-node. A binary tree edge connecting

nodes with different level numbers is regarded as a vertical edge and these edges

connect pseudo-nodes to form the B-tree.

The AA-Tree maintains the following invariants:

• Only right edges are horizontal

• Pseudo-nodes have at most three children

• There are no breaks in the level numbers

The invariants can be implemented by examining three cases for insert opera-

tions and five cases for delete operations. Restructuring operations consisting of

combinations of just two balancing rotations, called skew and split, are required

to maintain the invariants. The skew and split balancing rotations change the

topology of the Canonical Binary Tree. The associativity of the annotator func-

tion ensures that the annotations preserve the functionality of the ADT that it

implements.

A 2-3 B-tree preserves the invariant that all right edges are horizontal. A

horizontal left edge is transformed into a horizontal right edge by a right rotation

called a skew.

Figure 3.2 illustrates a skew balancing rotation.

A 2-3 B-tree preserves the invariant that a pseudo-node has at most three

children. A pseudo-node with four children contains two horizontal right edges.

These are transformed into a left and a right vertical edge by a left rotation called

a split. The split balancing rotation raises the level of the middle vertex.

Figure 3.3 illustrates a split balancing rotation.

Figure 3.4 illustrates an example of a skew balancing rotation acting on a

vector.

Figure 3.5 illustrates an example of a split balancing rotation acting on a

vector.

A tree can be balanced at any time. In our implementation balancing takes

place during insert and delete operations. These operations create a new path

10 CONTENTS

within the Canonical Binary Tree and this path can cause the balancing invari-

ants to be compromised. Each node on the path is checked by comparing the

configuration of neighbouring nodes to ensure the invariants are preserved. The

process of checking the balancing invariants starts at the leaf and ends at root.

The addresses of the vertices on the path created by the operation are maintained

on a stack so that the path can be accessed in reverse order. An operation that

would cause an invariant to be compromised is made compliant by restructuring

the tree during the path copy.

3.6.3 Previous work

Tree balancing schemes reduce access time by ensuring that paths within a tree

are of similar lengths so that the tree remains balanced. Guibas describes a

commonly used balancing scheme for ephemeral trees called the red-black tree

[GS78]. Balancing schemes are applicable to both ephemeral and Immutable Data

Structures. Okasaki applies the red-black scheme to balance immutable binary

trees implemented by a purely functional data structure [Oka98]. Okasaki also

describes a purely functional implementation of the AVL tree balancing algorithm.

However, the balancing of an immutable binary tree implemented in an imperative

programming language has not previously been considered.

3.6.4 Utility functions

The Canonical Binary Tree provides an ADT-agnostic in-order traversal of the

data structure that returns the values of the leaves. The first value returned is

that of the left most leaf of the tree and the last value returned is that of the

sentinel.

The Canonical Binary Tree also provides a full copy utility that creates a copy

of the tree which shares leaves with the tree being copied and a näıve copy utility

that creates an entirely new copy of the tree. The full copy utility can be used

to both copy and compress a tree. The näıve copy can be used to both copy a

tree and to convert between different ADTs.

3.6.5 Optimisation

To reduce the number of paths created by the balance process a copy of a path

can be balanced in mutable storage and then copied to immutable storage. This

3.6. BALANCING 11

optimisation reduces the amount of storage consumed by the Immutable Data

Structure at the cost of additional copying.

Anderson describes a 2-3 B-tree in which the balancing information takes the

form of a level number and the invariants act on this number. This formulation

is known as an AA-tree. However, the level number is just an implementation

convenience. The invariants of the tree can also be expressed in terms of just

horizontal and vertical edges. Such a formulation results in a smaller node size

as a single bit indicator can be used to indicate the orientation of an edge.

A node may contain information about the subtree it suspends because that

subtree is immutable. This information can reduce the need to access the subtree

during balancing operations. It is possible to record within the node itself whether

or not a child of a node is a leaf. It is also possible to record whether or not the

link to a child’s left child is horizontal or vertical within the parent node. These

optimisations reduce the number of nodes that must be accessed when testing

the balancing invariants. Using these optimisations it is only necessary to access

nodes on the path to balance the tree.

The size of a node can have a significant effect on performance as larger node

sizes reduce the effectiveness of caching. In our implementation the data type of

the annotation is supplied as a template parameter. The smallest data type that

can accommodate the expected range of annotation values is chosen to minimise

the node size. The nature of the references to a child node also affects the size

of the node. Memory displacements or ordinal numbers may be used instead

of pointers to reduce the node size when the memory to be used by the data

structure is pre-allocated in a contiguous chunk.

A tree with multiple children per node improves access times by making the

tree shallower but this optimisation comes at the cost of increased implementation

complexity. A binary tree can be mapped onto a tree with larger nodes by

making some of the parent-child relationships implicit. When paths are written

to contiguous memory the relationship between a node and one of its children

can be implied, because this child resides in a consecutive memory location, so

it is only necessary that a node contain a reference to one of its children and

a bit indicating whether that child is to the left or right. An immutable path

is typically written into contiguous memory leaf first, so the implicit child of a

node immediately precedes it in storage. By restricting the implicit parent-child

relationship to nodes on a path it is possible to achieve the effect of a large

12 CONTENTS

node with multiple children without significantly increasing the implementation

complexity.

When implementing Immutable Data Structures using C or C++ it is tempt-

ing to allocate individual nodes by using the functions malloc or new, but we

found that this leads to poor performance. The effect is particularly pronounced

in a concurrent execution environment where memory allocation is typically se-

rialised. We found that allocating nodes on a cache line boundary and fitting an

integral number of nodes into a cache line improved performance. In our imple-

mentation we used the Threading Building Blocks scalable memory allocator to

pre-allocate cache aligned contiguous chunks of storage for our data structures

[Int09]. A discussion of memory allocation in Immutable Data Structures can be

found on our website [Jar11].

3.6.6 Amortised access time

Amortised analysis is a method of analysing the performance of a function acting

on a data structure. The idea is that costly operations occur rarely and that

their affect on performance is offset by the occurrence of cheaper, more frequent

operations. The analysis proceeds by establishing the worst case time bound of

the function and how frequently this worst case occurs. The amortised time per

operation is the worst case time bound on a series of m operations divided by

m. Goodrich gives a detailed explanation of amortised time analysis for many

common ephemeral data structures [GT09].

Amortised analysis has two distinct purposes. Firstly it guides data structure

design and allows comparison between equivalent operations on different data

structures. For example, the amortised time for the insertion of a value with

associated priority into a priority queue ADT implemented by two different data

structures can be compared. Secondly, it guides application development because

it indicates the relative cost of different operations.

Published amortised access times for functions acting on a data structure

are an important guide for developing high performance applications. However,

access times are a characteristic of the data structure implementation rather than

the ADT. If the application programmer needs to know the amortised access time

for a series of operations then the details of the implementation of that data

structure have not been completely hidden by abstraction. Using the results

of amortised analysis as a guide to developing applications is orthogonal to the

3.6. BALANCING 13

principle of encapsulating the implementation details of a data structure.

The amortised time for all functions of the Canonical Binary Tree are identical

as each function requires that a single leaf be accessed. The worst case time bound

is 2log2(n) as the longest path to a leaf in a balanced AA-tree is twice as long as

the shortest [And93].

Bibliography

[And93] Arne Andersson. Balanced search trees made simple. In WADS ’93:

Proceedings of the Third Workshop on Algorithms and Data Structures,

pages 60–71, London, UK, 1993. Springer-Verlag.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance

of large ordered indexes. Acta Informatica, 1(3):173–189, February 1972.

[GS78] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework

for balanced trees. In FOCS, pages 8–21. IEEE, 1978.

[GT09] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foun-

dations, Analysis and Internet Examples. John Wiley & Sons, Inc., New

York, NY, USA, 2nd edition, 2009.

[Int09] Intel. Intel Threading Building Blocks: Programming for Current and

Future Multicore Platforms. IEEE/ACM International Symposium on

Code Generation and Optimization, July 2009.

[Jar11] Kim Jarvis. Transactional Data Structures.

http://transactionalmemory.com, June 2011.

[Jos99] Nicolai M. Josuttis. The C++ Standard Library: A tutorial and ref-

erence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1999.

[Oka98] Chris Okasaki. Purely functional data structures. Cambridge University

Press, New York, NY, USA, 1998.

14

http://transactionalmemory.com

	Balancing
	Balancing schemes
	Balancing the Canonical Binary Tree
	Previous work
	Utility functions
	Optimisation
	Amortised access time

	Bibliography

