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6.1 Progress and Contention Management

Concurrent applications suffer from the progress pathologies of blocking, live-lock
and priority inversion. Progress pathologies can be alleviated by a contention
manager. However, centralised contention management restricts the scalability
of a concurrent system. This thesis proposes that a concurrent application should

make strong progress guarantees to alleviate the need for contention management.

A concurrent application that guarantees that all of its constituent tasks com-
plete in a finite period of time offers a progress guarantee, whereas an application
that does not can suffer from a progress pathology. A useful concurrent appli-
cation should make a strong guarantee of progress but it is difficult to write

concurrent applications that guarantee progress.

The main contribution of this section is the observation that concurrent ap-
plications that make strong progress guarantees alleviate the need for contention
management. This section focuses on guaranteeing that functions acting on an

Immutable Data Structure eventually complete.

6.1.1 Blocking

A program that executes on a Transactional Memory system either blocks or
guarantees obstruction-free progress. Obstruction-freedom is the guarantee that if
a transaction is repeatedly re-tried and eventually encounters no interference from
other transactions, it will complete. Obstruction-freedom does not guarantee that
all of the transactions that constitute a concurrent program eventually complete.
Programs that execute on a Transactional Memory system offer weak progress

guarantees and are therefore prone to progress pathologies.
Section 6.1.3 discusses progress guarantees and progress pathologies.

Transactional Memory systems can implement a contention manager to alle-
viate progress pathologies and ensure the progress of the transactions executing
in the concurrent system. The contention manager has an overview of the con-
current processing and can intervene to ensure that the application eventually
completes. However, contention management is a necessarily centralised task so

it restricts the scalability of the concurrent system.
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6.1.2 Guaranteed Progress

An application should guarantee lock-free progress to alleviate the need for a
concurrent system to implement contention management. Centralised contention
management is a fundamental barrier to the scalability of a concurrent system,
whereas the difficulty of creating applications that guarantee progress is a problem
that can be overcome. This thesis focuses on making it easier to write concurrent
applications that guarantee progress.

Rajwar describes how concurrent applications based on the Time Stamp Or-
dering concurrency control protocol can be made lock-free [Raj02]. A lock-free
concurrent application guarantees system-wide progress but permits individual
operations to postpone indefinitely. A lock-free application is prone to the pathol-
ogy of live-lock and priority inversion. However, it will be argued that the use
of Time Stamp Ordering as the concurrency control protocol reduces the likeli-
hood of either pathology occurring so a concurrent application that guarantees
lock-free progress does not require contention management.

Live-lock can occur in a transactional system that uses Time Stamp Order-
ing. In practice, continual live-lock is unlikely because the unique monotonically
increasing time stamp assigned to each transaction acts as a priority causing a
single transaction to succeed eventually in any conflict between transactions.

Priority inversion can occur in lock-free applications that implement the Time
Stamp Ordering concurrency control protocol. In practice, priority inversion can
be addressed by ensuring that all transactions execute for similar durations. Long
running transactions do not occur when transactions are implemented at the
granularity of accesses to a data structure.

Bernstein explains in detail why database systems that implement Time Stamp

Ordering do not require contention management [BHGS87].

6.1.3 The Dining Philosophers

The dining philosophers problem can be used as an illustration of progress guaran-
tees and progress pathologies. Five philosophers are sitting round a table dining
on bowls of rice. Five chopsticks are placed between the bowls. Each philosopher
sits in front of a bowl and can only reach the chopstick to his immediate left or
right. A philosopher must have a pair of chopsticks in order to eat. The action

of the philosophers is determined by a dining algorithm.



4 CONTENTS

O
Sige
O]

Figure 6.1: The dining philosophers each have a rice bowl but there are
insufficient chopsticks for them to all eat at once.

Figure 6.1 illustrates the arrangement of bowls and chopsticks.

Hoare reformulated a five computer synchronisation problem, originally posed
by Dijkstra, as the dining philosophers problem [Hoa83|. Krishnaprasad describes
how a number of synchronisation strategies can be expressed in terms of dining
algorithms [Kri03].

The following discussion considers progress guarantees made by dining algo-
rithms and the progress pathologies they are prone to.

Deadlock is a circular wait condition that occurs when each of the philosophers
reaches for a second chopstick but finds that their neighbour has already taken
it. The philosophers involved in the deadlock will starve because eating requires
a pair of chopsticks.

Mutual exclusion is a convention that relies on blocking the progress of con-
current processes to prevent simultaneous execution. Deadlock can be prevented
in a system in which mutual exclusion is enforced by serialising access to a single
entity. To prevent deadlock a dining algorithm introduces a single napkin with
the rule that only the philosopher in possession of the napkin can eat. The lack of
a napkin blocks the other philosophers from eating. The napkin is placed on the
table and all the philosophers try to possess it but only one is successful. When
the successful philosopher has finished eating he places the napkin back on the
table. A single philosopher can dominate the napkin causing the others to starve.

A non-blocking algorithm ensures that operations competing for a shared
resource never have their progress indefinitely postponed by mutual exclusion. A
non-blocking algorithm guarantees that a philosopher will not starve as a result

of mutual exclusion.
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A non-blocking algorithm is obstruction-free if it guarantees that when an
action is tried repeatedly and eventually encounters no interference from other
actions it will complete successfully but it does not guarantee that such a situation
will occur. An obstruction-free dining algorithm guarantees that a philosopher

will be able to eat when the other philosophers are not attempting to eat.

Obstruction-free algorithms can suffer from the pathology of live-lock. Live-
lock occurs when two or more competing operations cause each other to restart,
preventing any of them making progress. A dining algorithm can live-lock when
each of the philosophers reaches for both chopsticks simultaneously but withdraws
when he observe his neighbour behaving likewise. All of the philosophers involved

in the live-lock will starve.

Obstruction-free algorithms can also suffer from the pathology of priority in-
version. Priority inversion occurs when a long running operation is preempted
by an operation of brief duration. A dining algorithm in which a philosopher
procrastinates when he has an opportunity to eat can suffer from priority in-
version. The procrastinating philosopher might starve because he is continually

interrupted by requests from other philosophers which prevent him from eating.

A non-blocking algorithm is lock-free if it guarantees that at least one action
eventually completes. A dining algorithm is lock-free if it guarantees that at
least one of the philosophers eventually eats. Lock-free algorithms can suffer
from live-lock and priority inversion but these pathologies do not prevent all
operations from making progress. In practice, live-lock and priority inversion are
less likely to occur in an algorithm that guarantees lock-freedom than one that

only guarantees obstruction-freedom.

A non-blocking algorithm is wait-free if it guarantees that eventually every
action completes. A wait-free dining algorithm guarantees that all of the philoso-
phers eventually get to eat. Wait-free algorithms are not prone to the pathologies
of live-lock and priority inversion. All concurrent algorithms can be converted
into implementations that are wait-free but the overheads of the conversion are
prohibitive [Her88] [FHS04].

At a philosophy conference philosophers have a choice of tables at which dif-
ferent dining algorithms are used. The wait-free table is the best because all of
the philosophers are guaranteed to eat eventually and the blocking table is the
worst because all the philosophers may starve because of deadlock. A lock-free

table is preferable to an obstruction-free table because at the lock-free table at
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least one philosopher does not starve. Wait-freedom is the strongest progress

guarantee and the other guarantees are progressively weaker.

6.1.4 Previous work

Applications executing on Transactional Memory systems suffer from the progress
pathologies of live-lock and dead-lock. In weakly isolated systems these patholo-
gies can occur in combination with the isolation pathology of cascading aborts.
Bobba categorises Transactional Memory pathologies and describes them in detail
[BMV*07].

Many Software Transactional Memory implementations block at some point
in their execution. Blocking Software Transactional Memory systems are easier to
design than non-blocking systems. A blocking Software Transactional Memory
hides blocking from the application programmer by implementing it internally
[DDS06] [HPSTO06] [SATH™06].

Several Software Transactional Memory systems guarantee obstruction-freedom
[HLMS03] [SCKPO07] [CRS05] [TMGT09]. These systems are based on the con-
cept of exclusive but revocable object ownership.

In an obstruction-free Software Transactional Memory system each transac-
tion is associated with a descriptor which indicates whether the transaction is
active, committed or aborted. Objects are owned by transactions and have an
associated pointer to their owner which is modified by an atomic instruction.
When a transaction reads an object it checks the pointer to determine whether
another transaction already owns it.

A transaction takes ownership of an object by modifying the pointer so that it
references the transaction’s descriptor. Once a transaction has taken ownership
of all the objects it will access it can commit its changes to those objects. This is
done by changing the transaction descriptor from live to committed. This action
will atomically commit the changes to all affected objects.

An obstruction-free Software Transactional Memory system can suffer from
progress pathologies. Concurrent transactions can prevent each other from own-
ing all of the objects they require, causing live-lock. Short running transactions
can prevent long running transactions from obtaining all the objects they require,
causing priority inversion.

Exclusive object ownership is a two-phase locking protocol which requires that

all the locks that will ever be required by a transaction are acquired before any are



6.1. PROGRESS AND CONTENTION MANAGEMENT 7

released. Bernstein describes the two-phase locking concurrency control protocol
in detail [BHG87]. Guerraoui explains that exclusive object ownership cannot
provide the stronger guarantee of lock-freedom because systems based on two-
phase locking cannot guarantee that at least one transaction will ever complete
its operation, while other transactions are active [GKO8].

Ennals argues that obstruction-free Software Transactional Memory systems
are less scalable than their blocking counterparts [Enn06]. However, we believe
that the best approach to overcoming scalability restrictions is to strengthen the
progress guarantee, because a concurrent application that does not guarantee

that all of its tasks eventually complete can hardly be described as scalable.
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