
Contents

6.1 Progress and Contention Management 2

6.1.1 Blocking . 2

6.1.2 Guaranteed Progress . 3

6.1.3 The Dining Philosophers 3

6.1.4 Previous work . 6

Bibliography 8

1

2 CONTENTS

6.1 Progress and Contention Management

Concurrent applications suffer from the progress pathologies of blocking, live-lock

and priority inversion. Progress pathologies can be alleviated by a contention

manager. However, centralised contention management restricts the scalability

of a concurrent system. This thesis proposes that a concurrent application should

make strong progress guarantees to alleviate the need for contention management.

A concurrent application that guarantees that all of its constituent tasks com-

plete in a finite period of time offers a progress guarantee, whereas an application

that does not can suffer from a progress pathology. A useful concurrent appli-

cation should make a strong guarantee of progress but it is difficult to write

concurrent applications that guarantee progress.

The main contribution of this section is the observation that concurrent ap-

plications that make strong progress guarantees alleviate the need for contention

management. This section focuses on guaranteeing that functions acting on an

Immutable Data Structure eventually complete.

6.1.1 Blocking

A program that executes on a Transactional Memory system either blocks or

guarantees obstruction-free progress. Obstruction-freedom is the guarantee that if

a transaction is repeatedly re-tried and eventually encounters no interference from

other transactions, it will complete. Obstruction-freedom does not guarantee that

all of the transactions that constitute a concurrent program eventually complete.

Programs that execute on a Transactional Memory system offer weak progress

guarantees and are therefore prone to progress pathologies.

Section 6.1.3 discusses progress guarantees and progress pathologies.

Transactional Memory systems can implement a contention manager to alle-

viate progress pathologies and ensure the progress of the transactions executing

in the concurrent system. The contention manager has an overview of the con-

current processing and can intervene to ensure that the application eventually

completes. However, contention management is a necessarily centralised task so

it restricts the scalability of the concurrent system.

6.1. PROGRESS AND CONTENTION MANAGEMENT 3

6.1.2 Guaranteed Progress

An application should guarantee lock-free progress to alleviate the need for a

concurrent system to implement contention management. Centralised contention

management is a fundamental barrier to the scalability of a concurrent system,

whereas the difficulty of creating applications that guarantee progress is a problem

that can be overcome. This thesis focuses on making it easier to write concurrent

applications that guarantee progress.

Rajwar describes how concurrent applications based on the Time Stamp Or-

dering concurrency control protocol can be made lock-free [Raj02]. A lock-free

concurrent application guarantees system-wide progress but permits individual

operations to postpone indefinitely. A lock-free application is prone to the pathol-

ogy of live-lock and priority inversion. However, it will be argued that the use

of Time Stamp Ordering as the concurrency control protocol reduces the likeli-

hood of either pathology occurring so a concurrent application that guarantees

lock-free progress does not require contention management.

Live-lock can occur in a transactional system that uses Time Stamp Order-

ing. In practice, continual live-lock is unlikely because the unique monotonically

increasing time stamp assigned to each transaction acts as a priority causing a

single transaction to succeed eventually in any conflict between transactions.

Priority inversion can occur in lock-free applications that implement the Time

Stamp Ordering concurrency control protocol. In practice, priority inversion can

be addressed by ensuring that all transactions execute for similar durations. Long

running transactions do not occur when transactions are implemented at the

granularity of accesses to a data structure.

Bernstein explains in detail why database systems that implement Time Stamp

Ordering do not require contention management [BHG87].

6.1.3 The Dining Philosophers

The dining philosophers problem can be used as an illustration of progress guaran-

tees and progress pathologies. Five philosophers are sitting round a table dining

on bowls of rice. Five chopsticks are placed between the bowls. Each philosopher

sits in front of a bowl and can only reach the chopstick to his immediate left or

right. A philosopher must have a pair of chopsticks in order to eat. The action

of the philosophers is determined by a dining algorithm.

4 CONTENTS

Figure 6.1: The dining philosophers each have a rice bowl but there are
insufficient chopsticks for them to all eat at once.

Figure 6.1 illustrates the arrangement of bowls and chopsticks.

Hoare reformulated a five computer synchronisation problem, originally posed

by Dijkstra, as the dining philosophers problem [Hoa83]. Krishnaprasad describes

how a number of synchronisation strategies can be expressed in terms of dining

algorithms [Kri03].

The following discussion considers progress guarantees made by dining algo-

rithms and the progress pathologies they are prone to.

Deadlock is a circular wait condition that occurs when each of the philosophers

reaches for a second chopstick but finds that their neighbour has already taken

it. The philosophers involved in the deadlock will starve because eating requires

a pair of chopsticks.

Mutual exclusion is a convention that relies on blocking the progress of con-

current processes to prevent simultaneous execution. Deadlock can be prevented

in a system in which mutual exclusion is enforced by serialising access to a single

entity. To prevent deadlock a dining algorithm introduces a single napkin with

the rule that only the philosopher in possession of the napkin can eat. The lack of

a napkin blocks the other philosophers from eating. The napkin is placed on the

table and all the philosophers try to possess it but only one is successful. When

the successful philosopher has finished eating he places the napkin back on the

table. A single philosopher can dominate the napkin causing the others to starve.

A non-blocking algorithm ensures that operations competing for a shared

resource never have their progress indefinitely postponed by mutual exclusion. A

non-blocking algorithm guarantees that a philosopher will not starve as a result

of mutual exclusion.

6.1. PROGRESS AND CONTENTION MANAGEMENT 5

A non-blocking algorithm is obstruction-free if it guarantees that when an

action is tried repeatedly and eventually encounters no interference from other

actions it will complete successfully but it does not guarantee that such a situation

will occur. An obstruction-free dining algorithm guarantees that a philosopher

will be able to eat when the other philosophers are not attempting to eat.

Obstruction-free algorithms can suffer from the pathology of live-lock. Live-

lock occurs when two or more competing operations cause each other to restart,

preventing any of them making progress. A dining algorithm can live-lock when

each of the philosophers reaches for both chopsticks simultaneously but withdraws

when he observe his neighbour behaving likewise. All of the philosophers involved

in the live-lock will starve.

Obstruction-free algorithms can also suffer from the pathology of priority in-

version. Priority inversion occurs when a long running operation is preempted

by an operation of brief duration. A dining algorithm in which a philosopher

procrastinates when he has an opportunity to eat can suffer from priority in-

version. The procrastinating philosopher might starve because he is continually

interrupted by requests from other philosophers which prevent him from eating.

A non-blocking algorithm is lock-free if it guarantees that at least one action

eventually completes. A dining algorithm is lock-free if it guarantees that at

least one of the philosophers eventually eats. Lock-free algorithms can suffer

from live-lock and priority inversion but these pathologies do not prevent all

operations from making progress. In practice, live-lock and priority inversion are

less likely to occur in an algorithm that guarantees lock-freedom than one that

only guarantees obstruction-freedom.

A non-blocking algorithm is wait-free if it guarantees that eventually every

action completes. A wait-free dining algorithm guarantees that all of the philoso-

phers eventually get to eat. Wait-free algorithms are not prone to the pathologies

of live-lock and priority inversion. All concurrent algorithms can be converted

into implementations that are wait-free but the overheads of the conversion are

prohibitive [Her88] [FHS04].

At a philosophy conference philosophers have a choice of tables at which dif-

ferent dining algorithms are used. The wait-free table is the best because all of

the philosophers are guaranteed to eat eventually and the blocking table is the

worst because all the philosophers may starve because of deadlock. A lock-free

table is preferable to an obstruction-free table because at the lock-free table at

6 CONTENTS

least one philosopher does not starve. Wait-freedom is the strongest progress

guarantee and the other guarantees are progressively weaker.

6.1.4 Previous work

Applications executing on Transactional Memory systems suffer from the progress

pathologies of live-lock and dead-lock. In weakly isolated systems these patholo-

gies can occur in combination with the isolation pathology of cascading aborts.

Bobba categorises Transactional Memory pathologies and describes them in detail

[BMV+07].

Many Software Transactional Memory implementations block at some point

in their execution. Blocking Software Transactional Memory systems are easier to

design than non-blocking systems. A blocking Software Transactional Memory

hides blocking from the application programmer by implementing it internally

[DDS06] [HPST06] [SATH+06].

Several Software Transactional Memory systems guarantee obstruction-freedom

[HLMS03] [SCKP07] [CRS05] [TMG+09]. These systems are based on the con-

cept of exclusive but revocable object ownership.

In an obstruction-free Software Transactional Memory system each transac-

tion is associated with a descriptor which indicates whether the transaction is

active, committed or aborted. Objects are owned by transactions and have an

associated pointer to their owner which is modified by an atomic instruction.

When a transaction reads an object it checks the pointer to determine whether

another transaction already owns it.

A transaction takes ownership of an object by modifying the pointer so that it

references the transaction’s descriptor. Once a transaction has taken ownership

of all the objects it will access it can commit its changes to those objects. This is

done by changing the transaction descriptor from live to committed. This action

will atomically commit the changes to all affected objects.

An obstruction-free Software Transactional Memory system can suffer from

progress pathologies. Concurrent transactions can prevent each other from own-

ing all of the objects they require, causing live-lock. Short running transactions

can prevent long running transactions from obtaining all the objects they require,

causing priority inversion.

Exclusive object ownership is a two-phase locking protocol which requires that

all the locks that will ever be required by a transaction are acquired before any are

6.1. PROGRESS AND CONTENTION MANAGEMENT 7

released. Bernstein describes the two-phase locking concurrency control protocol

in detail [BHG87]. Guerraoui explains that exclusive object ownership cannot

provide the stronger guarantee of lock-freedom because systems based on two-

phase locking cannot guarantee that at least one transaction will ever complete

its operation, while other transactions are active [GK08].

Ennals argues that obstruction-free Software Transactional Memory systems

are less scalable than their blocking counterparts [Enn06]. However, we believe

that the best approach to overcoming scalability restrictions is to strengthen the

progress guarantee, because a concurrent application that does not guarantee

that all of its tasks eventually complete can hardly be described as scalable.

Bibliography

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-

currency Control and Recovery in Database Systems. Addison-

Wesley, 1987.

[BMV+07] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D.

Hill, Michael M. Swift, and David A. Wood. Performance pathologies

in hardware transactional memory. In Proceedings of the 34rd Annual

International Symposium on Computer Architecture. International

Symposium on Computer Architecture, pages 81–91, 2007.

[CRS05] Joao Cachopo and Antonio Rito-Silva. Versioned boxes as the basis

for memory transactions. In OOPSLA 2005 Workshop on Synchro-

nization and Concurrency in Object-Oriented Languages (SCOOL),

October 2005.

[DDS06] O. Shalev D. Dice and N. Shavit. Transactional locking ii. In Proc. of

the 20th International Symposium on Distributed Computing (DISC

2006), pages 194–208, 2006.

[Enn06] Robert Ennals. Software transactional memory should not be

obstruction-free. Technical Report IRC-TR-06-052, Intel Research

Cambridge Tech Report, January 2006.

[FHS04] Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weakness

of conditional synchronization primitives. In Proceedings of the 23rd

Annual ACM Symposium on Principles of Distributed Computing,

pages 80–87. ACM Press, 2004.

[GK08] Rachid Guerraoui and Micha l Kapa lka. On obstruction-free trans-

actions. In SPAA ’08: Proc. twentieth annual symposium on Paral-

lelism in algorithms and architectures, pages 304–313, June 2008.

8

BIBLIOGRAPHY 9

[Her88] Maurice P. Herlihy. Impossibility and universality results for wait-free

synchronization. In PODC ’88: Proceedings of the seventh annual

ACM Symposium on Principles of distributed computing, pages 276–

290, New York, NY, USA, 1988. ACM.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William Scherer.

Software transactional memory for dynamic-sized data structures. In

PODC ’03: Proc. 22nd ACM Symposium on Principles of Distributed

Computing, pages 92–101, July 2003.

[Hoa83] C. A. R. Hoare. Communicating sequential processes. Commun.

ACM, 26:100–106, January 1983.

[HPST06] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Op-

timizing memory transactions. In Proceedings of the 2006 Conference

on Programming language design and implementation, pages 14–25.

ACM Press, June 2006.

[Kri03] S. Krishnaprasad. Concurrent/Distributed programming illustrated

using the dining philosophers problem. J. Comput. Small Coll.,

18:104–110, April 2003.

[Raj02] Ravi Rajwar. Speculation-based techniques for transactional lock-

free execution of lock-based programs. PhD thesis, Department of

Computer Science, 2002. Supervisor-Goodman, James R.

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao

Minh, and Benjamin Hertzberg. Mcrt-stm: a high performance soft-

ware transactional memory system for a multi-core runtime. In Proc.

11th ACM SIGPLAN Symp. on Principles and Practice of Parallel

Programming (PPoPP ’06), pages 187–197. ACM, March 2006.

[SCKP07] Jaswanth Sreeram, Romain Cledat, Tushar Kumar, and Santosh

Pande. RSTM: A relaxed consistency software transactional mem-

ory for multicores. In PACT ’07: Proceedings of the 16th Interna-

tional Conference on Parallel Architecture and Compilation Tech-

niques, page 428. IEEE Computer Society, 2007.

10 BIBLIOGRAPHY

[TMG+09] Fuad Tabba, Mark Moir, James R. Goodman, Andrew Hay, and Cong

Wang. NZTM: Nonblocking zero-indirection transactional memory.

In SPAA ’09: Proc. 21st Symposium on Parallelism in Algorithms

and Architectures, August 2009.

	Progress and Contention Management
	Blocking
	Guaranteed Progress
	The Dining Philosophers
	Previous work

	Bibliography

