
Contents

5.1 Distributed Concurrency Control 2

5.1.1 Centralised Concurrency Control 2

5.1.2 Distributed Concurrency control 3

5.1.3 Transaction Management 4

5.1.4 Previous work . 5

5.1.5 Time Stamp Ordering . 5

5.1.6 Programmer productivity 6

Bibliography 8

1

2 CONTENTS

5.1 Distributed Concurrency Control

Transactional Memory systems require the application program to interact with

a centralised transaction manager but this interaction makes programming diffi-

cult and restricts scalability. This section proposes using distributed transaction

management to ensure the correct concurrent execution of Memory Transactions.

Distributed transaction management makes concurrent programming easier and

concurrent systems more scalable.

The main run-time component of a Transactional Memory system is the trans-

action manager which ensures the correct concurrent execution of Memory Trans-

actions. Correctness is usually taken to mean that the result of the concurrent

execution is equivalent to the result obtained by executing the transactions in

some serial order. A transaction manager ensures serialisability by enforcing a

concurrency control protocol and the choice of protocol dictates the design of the

transaction manager.

Section 5.1.3 introduces Transaction management.

The main contribution of this section is the observation that the correct con-

current execution of Memory Transactions can be ensured without centralised

transaction management. This section focuses on ensuring the serialisable execu-

tion of functions acting on an Immutable Data Structure.

5.1.1 Centralised Concurrency Control

Centralised transaction management restricts the scalability of a concurrent sys-

tem as some part of the management processing is necessarily serialised. As

the number of concurrent processors increases the time spent within the seri-

alised part grows and eventually dominates the execution time of the concurrent

system. Amdahl’s law imposes restrictions on the scalability of a system with

centralised transaction management.

A concurrent application communicates with the transaction manager to sig-

nal that it is ready to commit a transaction and the transaction manager then

responds. This two way communication cannot be easily hidden by abstraction.

The orchestration of communication with the transaction manager makes con-

current programming difficult.

Centralised transaction management makes it difficult for programmers to use

5.1. DISTRIBUTED CONCURRENCY CONTROL 3

Memory Transactions in existing programs. To make use of Memory Transac-

tions a programmer must adapt a program to fit into a transaction processing

framework. This is an obstacle to the integration of Memory Transactions into

existing software and it is a barrier to the adoption of Transactional Memory.

The solution to these difficulties should ensure the serialisability of concurrent

Memory Transactions without requiring a centralised transaction manager.

5.1.2 Distributed Concurrency control

Distributed transaction management is scalable because it does not require a

centralised mechanism to enforce concurrency control. It makes concurrent pro-

gramming easier because programmers do not need to coordinate the applica-

tion’s interaction with a centralised system and it makes the use of Memory

Transactions in existing applications easier by alleviating the need to integrate a

concurrent application into a centralised transaction management framework.

A distributed transaction manager can make the decision whether to commit

or abort a transaction independent of operations taking place on other processors

because a distributed concurrency control protocol requires only information local

to a processor. It does not depend on any information about concurrently active

transactions so in a distributed system it is not necessary to orchestrate the

interaction of transactions on multiple processors. Each processor can implement

transaction management independently.

A distributed transaction manager can make the decision whether to com-

mit or abort a transaction using only local information about the transactions

that affect an object. It does not depend on information about accesses to any

other objects so in a distributed system each transaction manager can maintain

information about the objects that it manages and go about making its deci-

sions independent of the action of other transaction managers. Each object can

implement transaction management independently.

A distributed transaction manager does not attempt to serialise access to

multiple objects. Groups of objects that require mutually consistent access are

logically connected and should be combined into a single object for the purposes

of concurrency control.

A fully distributed concurrency control protocol requires no communication

between transaction managers whatsoever as it can be implemented on a per

processor per object basis.

4 CONTENTS

5.1.3 Transaction Management

Database systems divide transaction management into three distinct tasks: con-

currency control, contention management and scheduling. Concurrency control

is the task of ensuring correct concurrent execution by enforcing serialisability.

Contention management is the task of guaranteeing progress. Scheduling is the

task of load-balancing the execution between processors. We make a distinction

between these tasks and consider each independently. However, Transactional

Memory systems tend not to treat these aspects of transaction management as

distinct. Consequently, transaction management in Transactional Memory sys-

tems tends to be difficult to characterise.

A transaction manager ensures that concurrent execution is correct by ensur-

ing that it is equivalent to a serial execution. Determining whether a concurrent

execution is serialisable is a NP-Complete problem [Pap79]. A transaction man-

ager enforces a concurrency control protocol which ensures that all conforming

transaction schedules are serialisable.

A transaction manager applies the rules of the concurrency control protocol

to determine whether a transaction can commit or not. A concurrency control

protocol can be viewed as a set of invariants and a binary function which en-

sures them. In the Transactional Memory literature the action of this function is

referred to as validation.

A concurrency control protocol can be enforced either pessimistically, by a

scheduler which checks that each operation conforms to the invariants of the

concurrency control protocol before it is executed, or optimistically, by a certi-

fier that enforces the concurrency control protocol when a transaction commits.

The Transactional Memory literature refers to pessimistic concurrency control

as eager validation and optimistic concurrency control as lazy validation. Many

Transactional Memory systems employ mixed protocols detecting some types of

conflict eagerly and others lazily.

A concurrency control protocol considers conflicting read and write operations

acting on variables. These conflicts can be either between a read and a write

or between two writes. Different concurrency control protocols can be applied

independently to each type of conflict. A concurrency control protocol considers

conflicts between these operations without regard to the values of the variables.

Transactional Memory systems can be roughly divided into those which regard

the variables as objects and those which regard them as memory words.

5.1. DISTRIBUTED CONCURRENCY CONTROL 5

A transaction certifier requires a record of the read and write operations on

variables and the transactions that issued them. The association between vari-

ables and transactions can be maintained by placing a transaction identifier within

each affected object. It can also be maintained by associating a transaction with

a list of addresses or object identifiers representing its read and write set. A

certifier also requires meta-data, such as time stamps, relating to the operations

on each variable.

The interaction between weakly isolated transactions is complex so concur-

rency control is simplified by strong isolation. The validation process is made

simpler if it is known that all the values read by a transaction were written by

transactions that have already committed.

5.1.4 Previous work

Bernstein comprehensively describes concurrency control and transaction man-

agement in a book entitled ‘Concurrency Control and Recovery in Database Sys-

tems’ [BHG87]. Özsu describes distributed transaction management and dis-

tributed concurrency control in database systems [ÖV99].

Kotselidis develops the idea of distributing Memory Transactions across a

computing cluster [KAJ+07]. Hammond describes the TCC protocol which is

a centralised broadcast based concurrency control protocol enforced by a cen-

tralised transaction manager [HCW+04]. Kotselidis describes a centralised broad-

cast concurrency control protocol based on the TCC protocol which ensures the

serialisability of transactions both within a Chip Multi-Processor and across the

cluster. However, in a computing cluster the latency and bandwidth restrictions

of Inter-Processor Communication are more severe and the problems created by

centralised transaction management are more apparent than in a Chip Multi-

Processor. Kotselidis found that the centralised nature of transaction manage-

ment made concurrent programming difficult and restricted the scalability of the

system [KAJ+08]. These problems were not easily overcome despite a significant

engineering effort.

5.1.5 Time Stamp Ordering

There are several distributed concurrency control protocols described in the liter-

ature and each can be applied independently to different types of conflict. Both

6 CONTENTS

the Time Stamp Ordering protocol and Reed’s Multi-version Time Stamp Order-

ing protocol can be implemented without blocking so a distributed transaction

manager can enforce either concurrency control protocol [BHG87] [Ree79].

Pessimistic concurrency control requires fine-grained memory serialisation and

a strongly coherent memory model. As the number of processors on a Chip

Multi-Processor increases the overhead of implementing fine-grained memory se-

rialisation in hardware increases [HP06]. The Transactional Memory literature

therefore makes a strong case for optimistic concurrency control [HLR10].

The Time Stamp Ordering concurrency control protocol can be enforced opti-

mistically by a Time Stamp Ordering certifier which associates each transaction

with a unique monotonically increasing time stamp. The certifier maintains a

set containing the variables read and written by a transaction and also associates

each variable with the time stamp of the transaction that wrote the variable and

the highest time stamp of any transaction to have read the variable. When a

transaction commits the certifier examines the read and write time stamps of all

of the variables affected by the transaction and if the operations conform to the

protocol then the transaction can commit, otherwise it must be aborted.

5.1.6 Programmer productivity

Ease of problem diagnosis is an important contributor to overall programmer pro-

ductivity. It is often very difficult to diagnose problems in a concurrent system

where concurrency control is enforced by a locking protocol because it can be

difficult to determine which transaction wrote a particular value to a variable.

When Time Stamp Ordering is used as a concurrency control protocol transac-

tions appear to occur in the order of their starting time stamps. The order in

which transactions are executed can be recorded and this aids the diagnosis of

any problems that occur when a transactional system is executing concurrently.

The order of the memory operations at the time the problem occurred can be

determined using from the read and write time stamps associated with variables

so it is possible to diagnose a problem from a core dump taken at the moment in

time that a problem occurred.

Ease of problem reproduction is an important contributor to overall program-

mer productivity. It is often very difficult to reproduce a problem in a concurrent

system where concurrency control is enforced by a locking protocol because the

serial order, to which the execution should be equivalent, may be unknown. When

5.1. DISTRIBUTED CONCURRENCY CONTROL 7

Time Stamp Ordering is used as the concurrency control protocol the serial order

is given by the order of the transaction time stamps so it is possible to reproduce

problems by executing the transactions serially in the order given by their time

stamps.

Bibliography

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-

currency Control and Recovery in Database Systems. Addison-Wesley,

1987.

[HCW+04] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg,

Mike Chen, Christos Kozyrakis, and Kunle Olukotun. Programming

with transactional coherence and consistency (tcc). In ASPLOS-XI:

Proceedings of the 11th international conference on Architectural sup-

port for programming languages and operating systems, pages 1–13.

ACM Press, October 2004.

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-

ory, 2nd edition. Synthesis Lectures on Computer Architecture. Mor-

gan & Claypool Publishers, 2010.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2006.

[KAJ+07] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján,

Chris Kirkham, and Ian Watson. Designing a distributed software

transactional memory system. In ACACES ’07: 3rd International

Summer School on Advanced Computer Architecture and Compilation

for Embedded Systems, July 2007.

[KAJ+08] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján,

Chris Kirkham, and Ian Watson. Distm: A software transactional

memory framework for clusters. In ICPP ’08: Proceedings of the

37th IEEE International Conference on Parallel Processing. IEEE

Computer Society Press, September 2008.

8

BIBLIOGRAPHY 9

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed

Database Systems, Second Edition. Prentice-Hall, 1999.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database

updates. J. ACM, 26:631–653, October 1979.

[Ree79] David P. Reed. Implementing atomic actions on decentralized data.

In Proceedings of the seventh ACM symposium on Operating systems

principles, SOSP ’79, pages 163–, New York, NY, USA, 1979. ACM.

	Distributed Concurrency Control
	Centralised Concurrency Control
	Distributed Concurrency control
	Transaction Management
	Previous work
	Time Stamp Ordering
	Programmer productivity

	Bibliography

