Contents

6.4 Distribution and Scheduling .
6.4.1 Scheduling
6.4.2 Load-balance
6.4.3 Scheduling parallel work
6.4.4 Previous work
6.4.5 'Transaction granularity
Bibliography

S O = W NN

2 CONTENTS

6.4 Distribution and Scheduling

The benefits of concurrent execution come at the cost of distributing and schedul-
ing work and detecting any conflicts. In a Transactional Memory system the
scheduler is regarded as a component of the transaction manager. This section
describes how the scheduling problem can be reduced to one of load-balancing
concurrent execution. A two-level scheduler intended for a parallel workload can
be utilised to load-balance concurrent execution.

The overhead associated with distributing parallel work on a Chip Multi-
Processor is high and for many workloads the overhead of distribution exceeds
the benefit of parallel execution. The overhead associated with distributing and
scheduling concurrent Memory Transactions is significantly higher than that as-
sociated with distributing a similar amount of parallel work because of the addi-
tional effort required to ensure correct concurrent execution.

The main contribution of this section is observation that, once isolation and
progress pathologies have been eliminated, the problem of scheduling Memory
Transactions is similar to that of distributing parallel work. This section focuses

on using an existing two-level scheduler to schedule Memory Transactions.

6.4.1 Scheduling

Transactional Memory systems implement transaction scheduling strategies that
do not make a distinction among the transaction management tasks of concur-
rency control, contention management and load-balancing.

Transactional Memory systems may try to improve the efficiency of concur-
rency control by scheduling transactions to avoid conflicts and reduce the over-
head of wasted work. These benefits should be balanced against the scalability
restrictions of centralised concurrency control.

Transactional Memory systems that make weak progress guarantees may sched-
ule transactions to avoid progress pathologies. The benefits of guaranteed progress
should be balanced against the scalability restrictions of centralised contention
management.

A Transactional Memory system should execute a workload that is known
not to contain conflicting tasks without incurring the overhead of concurrency
control.

The problem of scheduling parallel work on a Chip Multi-Processor is solved

6.4. DISTRIBUTION AND SCHEDULING 3

by using a two-level scheduler.
Section 6.4.3 describes the scheduling of parallel work on a Chip Multi-Processor.

The overhead of scheduling work on a parallel system imposes a lower limit
on the size of chunks of work that are worthwhile scheduling and the additional

overhead of concurrency control raises this limit further.

Section 6.4.5 describes how these limits influence the design of a transactional

system.

An access function of an Immutable Data Structure is responsible for concur-
rency control, which alleviates the need for centralised concurrency control, and
it also guarantees progress, which alleviates the need for centralised contention
management. The only transaction management task that requires centralisation

is scheduling.

A solution to the scheduling problem should isolate and simplify the schedul-
ing component of transaction management and make it compatible with mecha-

nisms for distributing parallel work.

6.4.2 Load-balance

The task of scheduling transactions can be simplified to the point that it is similar
to that of load-balancing parallel work. This proposal satisfies the requirements
because it isolates the scheduling task and provides a mechanism for scheduling

tasks which are known not to conflict.

The overheads associated with scheduling concurrent work to reduce conflicts
are difficult to justify through increased speed-up because scheduling around con-

flicts requires a centralised transaction manager and this restricts scalability.

The overheads associated with scheduling concurrent work to ensure progress
are difficult to justify through increased speed-up because scheduling transactions
to ensure progress requires a centralised view of contention management and this

restricts scalability.

When these requirements are removed the problem of scheduling is reduced
to one of load-balancing. If it is known that there are no dependencies between
access functions then a parallel work scheduler can schedule them to be executed

in parallel without the overhead of concurrency control.

4 CONTENTS

The execution of an access function may be regarded as a Memory Trans-
action. The access functions of an Immutable Data Structure implement a dis-
tributed transaction manager internally. When a conflict is detected the trans-
action manager schedules the transaction for re-execution by adding it to the
work-list of the scheduler.

The validate and meld functions are used to implement concurrency control in
a Canonical Binary Tree. These functions can be wrapped by the functions which
implement an ADT so a function acting on an Immutable Data Structure can
be regarded as a chunk of work that can be scheduled by a two-level scheduler.
If the validate function fails then the version of the Immutable Data Structure
created by the function is discarded and the function may be re-tried. Re-try is

implemented by placing the chunk of work back on the work-list.

6.4.3 Scheduling parallel work

The science of High Performance Computing focuses on the parallel execution of
programs on supercomputers. Its main application is in the simulation of physical
systems which evolve over time. Dowd provides a general introduction to High
Performance Computing [Dow93]. Kumar describes how schedules for executing
parallel work can be determined statically, by the analysis of parallel algorithms
[KGGK94|. Parallel algorithms focus on orchestrating the execution of discrete
units of work which can be performed in parallel.

The scheduling of parallel work on a Chip Multi-Processor is different from
orchestrating parallel work on a supercomputer. Chip Multi-Processors generally
have a lower number of processors than Supercomputers and each processor shares
a common cache and a common path to main memory. The effects of caching
mean that the tasks scheduled on separate execution units affect each other in
ways that are difficult to predict. Mattson describes common parallel applica-
tion design patterns, which are very different from those of High Performance
Computing [MSMO04].

The problem of scheduling parallel work on a Chip Multi-Processor cannot
be addressed by static analysis of algorithms alone, so parallel work should be
marshalled and load-balanced by a dynamic scheduler. A two-level scheduler
implements a dynamic scheduling algorithm for parallel work. Two-level sched-
ulers are designed to permit parallel workloads, such as the simulation of physical

systems, to be efficiently executed by a Chip Multi-Processor.

6.4. DISTRIBUTION AND SCHEDULING 5

Blumofe introduces CILK which is a two-level scheduling system for parallel
workloads [BJKT96]. CILK implements a run-time scheduler which frees the
programmer from static scheduling considerations. The programmer specifies
chunks of work which can be performed in parallel by describing them using the
CILK programming language. The chunks are assigned to processors by the high-
level scheduler. The low-level scheduler marshalls the chunks to be performed by
a particular processor.

The CILK scheduler implements a scheduling policy called work stealing. The
low-level scheduler maintains a queue of chunks to be executed. It removes a
chunk of work from the front of the queue and executes it. When the queue
is exhausted the low-level scheduler steals chunks from the back of a queue be-
longing to another thread. This makes the scheduling task scalable, because the
centralised high-level scheduler is only involved in the initial assignment of the
chunks to the queues of each processor.

Intel’s Threading Building Blocks product [Int09] is a parallel programming
solution for Chip Multi-Processors. Threading Building Blocks applications are
written in the C++ programming language and the Threading Building Blocks
product is implemented as a library which is linked with the application. The
product includes a two-level work stealing scheduler which dynamically schedules
chunks of work provided to it on a work-list. This scheduler is similar to that
provided by CILK. However, Threading Building Blocks frees the programmer
from having to learn a new programming language in order to make use of a
two-level scheduler. Reinders provides an accessible introduction to the features
of the Threading Building Blocks product [Rei07].

6.4.4 Previous work

Ansari proposes a scheduling technique called Dynamic Transactional Reordering
[ALK™09]. This technique reduces wasted work by re-trying conflicting transac-
tions serially so that they do not repeatedly conflict. It also attempts to avoid
both isolation and progress pathologies by implementing a transaction aware work
stealing scheduler.

Ansari proposes a scheduling technique based on using information obtained
by profiling transactional applications [AJKT09]. Profiling information can be
used as input to a scheduler which anticipates conflicting transactions and sched-

ules them to execute serially. Ansari notes that the speed-up obtained by reducing

6 CONTENTS

wasted work does not always overcome the scheduling overheads.

The high overhead associated with the distribution and scheduling of parallel
work can be contrasted with the low overhead of scheduling Memory Transac-
tions assumed in the Transactional Memory literature. Warg describes how the
overhead of thread creation prevents fine grained speculative execution on a Chip
Multi-Processor from being worthwhile [WS01]. However, some studies of specu-
lative execution assume that the time required to create and schedule a thread is
lower than the access time to the first level cache. Quinones describes an infras-

tructure for speculative execution which assumes a thread creation time of ten
clock cycles [QuMST05].

6.4.5 Transaction granularity

The overhead of scheduling concurrent work places a lower bound on the gran-
ularity of transactions that are worthwhile scheduling. Transaction granularity
influences many aspects of Transactional Memory system design. Assumptions
about transaction granularity influence the style of transactional programming
a system permits. For example, at a fine level of transaction granularity it is
possible for a compiler to analyse the instructions within a Memory Transaction,
whereas at a coarser level of granularity the compiler is less able to reason about
the execution.

At a fine level of transaction granularity the amount of speculative state pro-
duced by a Memory Transaction is small and the probability that transactions
conflict is small, so the amount of work wasted when a conflict is detected is
small and the likelihood of work being wasted is low. However, at a coarse level
of transaction granularity large amounts of speculative state are produced and
the probability of conflict is high, so the amount of work wasted when a conflict
is detected is large and the likelihood of work being wasted is high.

To make use of a two-level scheduler the programmer divides an application
into chunks of work that are large enough to be worthwhile scheduling. If the
chunks are too small then the overheads associated with scheduling each chunk
can outweigh the benefits of executing it in parallel with other chunks. If the
chunks are too large then the scheduler may not be able to load-balance the work
evenly among processors. In practice, it is often difficult to divide an application
into suitably sized chunks because it is the expected execution time that deter-

mines chunk size. The execution time of the chunks is typically dominated by

6.4. DISTRIBUTION AND SCHEDULING 7

the latency of cache misses, which are difficult to predict.

The overhead of scheduling concurrent work is high. Threading Building
Blocks requires that a chunk of work should contain at least 10,000 instructions
[Int09]. The documentation does not define an instruction in this context but
assuming that an instruction completes each cycle, a chunk of work should have an
elapsed execution time of at least 10,000 clock cycles to be worthwhile scheduling.
In practice, it is difficult to divide an application into transactions which take at
least 10,000 clock cycles to execute.

The number of clock cycles required to perform a data structure access is nor-
mally dominated by the latency of cache misses. Jacob found that the latency of
a single cache miss is around 200 clock cycles and that the latency of consecutive
cache misses to dis-contiguous locations is considerably longer [Jac09]. A func-
tion acting on a large memory resident data structure may require thousands of
clock cycles to execute so functions that access a data structure are potentially

worthwhile scheduling for concurrent execution.

Bibliography

[AJK*09]

[ALK*09]

[BJK+96]

[Dow93]

[Int09]

[Jac09]

Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Lujan,
Chris Kirkham, and Ian Watson. Profiling transactional memory
applications. In PDP ’09: Proceedings of the 17th FEuromicro In-
ternational Conference on Parallel, Distributed, and Network-based

Processing. IEEE Computer Society Press, February 2009.

Mohammad Ansari, Mikel Lujan, Christos Kotselidis, Kim Jarvis,
Chris C. Kirkham, and Tan Watson. Steal-on-abort: Improving trans-
actional memory performance through dynamic transaction reorder-
ing. In High Performance Embedded Architectures and Compilers,
Fourth International Conference, pages 4—18, 2009.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an
efficient multithreaded runtime system. J. Parallel Distrib. Comput.,
37(1):55-69, 1996.

Kevin Dowd. High performance computing. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1993.

Intel. Intel Threading Building Blocks: Programming for Current
and Future Multicore Platforms. IEEE/ACM International Sympo-

sium on Code Generation and Optimization, July 2009.

Bruce L. Jacob. The Memory System: You Can’t Avoid It, You
Can’t Ignore It, You Can’t Fake It. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 20009.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.

Introduction to parallel computing: design and analysis of algorithms.

8

BIBLIOGRAPHY 9

[MSM04]

[QnMS*05]

[Rei07]

[WS01]

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,
1994.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns
for parallel programming. Addison-Wesley Professional, 2004.

Carlos Garcia Quinones, Carlos Madriles, Jesis Sanchez, Pedro Mar-
cuello, Antonio Gonzalez, and Dean M. Tullsen. Mitosis compiler:
an infrastructure for speculative threading based on pre-computation
slices. In Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, PLDI '05, pages
269-279, New York, NY, USA, 2005. ACM.

James Reinders. Intel Threading Building Blocks - Outfitting C++

for multi-core processor parallelism. O’Reilly, 2007.

Fredrik Warg and Per Stenstrom. Limits on speculative module-
level parallelism in imperative and object-oriented programs on cmp
platforms. In PACT ’01: Proceedings of the 2001 International Con-
ference on Parallel Architectures and Compilation Techniques, pages
221-230, Washington, DC, USA, 2001. IEEE Computer Society.

	Distribution and Scheduling
	Scheduling
	Load-balance
	Scheduling parallel work
	Previous work
	Transaction granularity

	Bibliography

