
Contents

7.1 The flow of time . 1

7.1.1 The notion of the flow of time as a global phenomenon . . 1

7.1.2 The notion of the flow of time as a local phenomenon . . . 4

7.2 Making scalable concurrent programs easier to write 6

7.3 Future work . 8

7.4 Summary . 14

Bibliography 15

7.1 The flow of time

The concurrency problem makes it difficult to write a program that executes

efficiently on a Chip Multi-Processor. This problem arises because information

cannot pass instantly between the processors so each has a different view of the

flow of time. Multi-Processor Systems that treat the flow of time as a global

phenomenon are difficult to program, prone to pathologies and do not scale well,

whereas those that treat time as a local phenomenon have intuitive concurrent

semantics, freedom from progress pathologies and few barriers to scalability.

Our commonsense notion of time is that it flows and that some changes are

simultaneous while others form an ordered sequence and it is a global phenomenon

experienced everywhere in the same way. In this section we consider whether it

is necessary or desirable to enforce this commonsense notion of the flow of time

on a concurrent system.

1

2 CONTENTS

7.1.1 The notion of the flow of time as a global phe-

nomenon

Concurrent systems attempt to impose a global view of the flow of time by en-

forcing a global ordering on state transitions and by preventing simultaneity.

Speculation about global state transitions

As time passes, events that were once in the future occur in the present moment

and are then relegated to the past. The present moment is the temporal boundary

between the uncertain future and the fixed past. This notion is referred to as the

passage of time.

In a uni-processor system the present moment in time is represented by the

state of memory. However, there is no global present moment in a Multi-Processor

System because information cannot pass instantly between processors.

In a Transactional Memory system speculation centres on the future state of

shared memory. The speculation is that a putative future state created in isolation

does not conflict with any other putative state created by another processor.

Transactional Memory systems weaken isolation to facilitate value sharing and

transactional composition and this blurs the boundary between speculative and

committed state making it difficult to impose a global present moment.

The difficulty of imposing a global temporal boundary between speculative

and shared state is the source of the complex semantics of concurrent systems.

Preventing simultaneity

Simultaneous state transformations must appear simultaneous to all observers.

This notion is referred to as absolute simultaneity.

In a uni-processor system the lack of coherence between components in the

memory hierarchy goes unnoticed by the application. However, in a Multi-

Processor System it is difficult to guarantee that state transformations, that may

appear simultaneous to an application executing on some processors, appear si-

multaneous to all processors.

Mutual exclusion prevents processors from simultaneously accessing the same

memory location by blocking the execution of some processors, but this obstructs

progress and is the source of progress pathologies.

7.1. THE FLOW OF TIME 3

A Transactional Memory system prevents processors from simultaneously ac-

cessing the same memory location by ensuring that only one of the conflicting

transactions succeeds. To achieve this the system must maintain both the specu-

lative and a committed version of the same memory location which increases the

effective memory bandwidth of the application.

The difficulty of imposing absolute simultaneity is a source of both the progress

pathologies and the high memory bandwidth requirement of concurrent applica-

tions.

Enforcing a global ordering on state transitions

Events form a uni-directional sequence in time which is a consequence of the

second law of thermodynamics. The arrow of time denotes an asymmetry between

the future and the past that imposes a global ordering on state transformations.

In a uni-processor system successive states of memory form a uni-directional

sequence, so execution can be seen as an ordered sequence of state transitions.

However, there is no global ordering of state transformations in a Multi-Processor

System because information cannot pass instantly between its components.

A Transactional Memory system implements a concurrency control protocol

to impose a global order on state transitions so that their effect on shared state

is equivalent to a serial execution. A centralised transaction manager is required

to impose a global ordering and this restricts scalability.

The difficulty of imposing a global ordering on state transitions is the source

of the scaling restrictions on concurrent systems.

Memory Transactions are not like database transactions

Few people in the computer architecture community believe that strong mod-

els of memory consistency are scalable. Modern Chip Multi-Processors impose

neither the concept of a global present moment nor the concept of absolute si-

multaneity, except when processing instructions with associated memory barriers.

Weakly consistent memory models, such as total store ordering, remove the need

to impose a global ordering of events [AG95]. However, most database systems

implement strong consistency models and many people in the database commu-

nity believe that a global ordering of events is essential for programmers to write

concurrent programs. Imposing a global view of the flow of time is the primary

purpose of the transaction manager in a database system [GR93].

4 CONTENTS

Transactional Memory has inherited the idea that a framework for speculative

execution must impose a commonsense notion of the flow of time. The idea is so

pervasive that few have questioned it. The conclusion of this thesis is that it is

neither necessary nor desirable to enforce a global view of the flow of time on a

concurrent system.

7.1.2 The notion of the flow of time as a local phenomenon

This thesis proposes that a Multi-Processor System should treat the flow of time

as a local phenomenon because information cannot pass instantly from one place

to another. A local notion of time does not invoke the concept of a global present

moment and only requires that simultaneity is relative and that events and ob-

servations are only ordered in relation to each other.

Davies provides an accessible introduction to the distinction between a local

and a global concept of the flow of time [Dav02].

Speculation about events and observations

If we accept that the passage of time is a local phenomenon affecting events

and observations rather than states then there is no global present moment and

speculation can be restricted to events and their observation.

This thesis describes a concurrent system in which there is no concept of a

global present moment separating the past from the future. When this concept

is removed speculation can centre on events and their observation, rather than

about states. The speculation is that an event does not change an observation

that has already been made. When speculation is restricted to events it is not

necessary to impose a global temporal boundary between speculative and shared

state.

The access functions of a Transactional Data Structure execute speculatively

and the speculation is that the execution of the access function does not affect

any value that has already been returned to the application. The concurrent

semantics of the access functions of a Transactional Data Structure are intuitive

because the functions acting on the Transactional Data Structure are strongly

isolated from each other and their effects on the structure are strictly serialisable.

By speculating about events and observations affecting a single object con-

current systems with intuitive concurrent semantics can be constructed.

7.1. THE FLOW OF TIME 5

Permitting simultaneity

If we accept that simultaneity is relative, and that events that occur at the same

moment in time when observed from one frame of reference may occur at different

moments if viewed from another, then there is no requirement to either restrict

simultaneity or to enforce it.

This thesis describes a concurrent system in which simultaneity is relative and

this differs from a system that restricts or enforces simultaneous state transitions.

When simultaneity is relative it is neither necessary to ensure that a mutation is

observed simultaneously by all processors nor prevent multiple processors from

simultaneously accessing the same object.

The access functions of a Transactional Data Structure permit simultaneous

access to data because that data is immutable. Immutable data is timeless and

it can be simultaneously accessed by multiple processors safely. Immutable data

is written just once so speculation does not increase the memory bandwidth of

the application. The access functions of a Transactional Data Structure do not

restrict simultaneous events by blocking the execution of another processor so

they do not restrict progress and are not prone to progress pathologies.

By accepting that simultaneity is relative it is possible to construct a concur-

rent program that is free from progress pathologies and that does not have an

increased memory bandwidth requirement when executing on multiple processors.

Speculation about a local order of events

If we accept that the arrow of time is a local phenomenon referring to the rela-

tionship between an event and its observation then there is no concept of a global

ordering of events so order can be enforced locally.

This thesis describes a concurrent system which imposes a local ordering on

the events affecting a particular object and this differs from the imposition of

a global ordering on state transitions. A locally serialisable ordering of events

affecting a particular object can be ensured by making that object linearizable.

The access functions of a Transactional Data Structure enforce an ordering

on the events that affect the data structure. A concurrent system that does not

impose a global ordering of events lends itself to a distributed implementation

and permits scalability.

By implementing distributed concurrency control it is possible to construct a

scalable concurrent system.

6 CONTENTS

7.2 Making scalable concurrent programs easier

to write

This thesis proposes that pure functions, immutable data and Memory Trans-

actions can be combined to create a programming model that makes scalable

concurrent programs easier to write. It is grounded on the observation that a

scalable concurrent program must be able to interact with an external entity

and it must guarantee progress. It also makes the observation that a scalable

concurrent system must not rely on coherent caches, strong memory models or

centralised transaction management.

Application programmers expect their programs to execute inevitably. How-

ever, a scalable concurrent system must support speculative execution so spec-

ulation must be restricted to the interface with shared state. There are many

ways to present a speculative interface to shared state but familiar ADTs are the

interface that programmers expect, so the design of the shared interface follows

from programmer expectations.

The memory bandwidth of a scalable concurrent application must be inde-

pendent of the number of processors participating in its execution. Engineering

barriers, such as the difficulty of scaling coherent caches, restrict the scalability

of systems that support mutable shared state, so in a scalable concurrent system

shared state must be immutable. There are many ways to implement immutable

data, but Immutable Data Structures based on the Canonical Binary Tree are

the simplest.

Distributed transaction management is scalable, whereas centralised transac-

tion management is not. Programmers must abandon the concept of globally

serialisable state transitions because distributed concurrency control can only en-

sure the correctness of concurrent accesses to individual objects. Linearizability

is a correctness condition for objects which provides behaviour that programmers

expect. Concurrent applications must make strong progress guarantees, because

contention management is not scalable. The requirement that transaction man-

agement must be distributed dictates both the nature of the interface to shared

state and the progress guarantees offered by the application.

Figure 7.1 illustrates how observations about scalable concurrent systems led

to the development of Transactional Data Structures.

7.2. MAKING SCALABLE CONCURRENT PROGRAMS EASIER TOWRITE7

Software
 Engineering
 Observation

Application must
 interact with

 external entity

Hardware
 Engineering
 Observation

Coherent caches
 are not scalable

Strong memory models
 are not scalable

Systems
 Engineering
 Observation

Centralised
 concurrency control

 is not scalable

Centralised
 contention management

 is not scalable

Shared state
 must be immutable

System must implement
 Distributed concurrency

control

Application must make
 strong progress guarntee

Application
 execution must

 be inevitable

Speculation must
 be restricted to

 shared state interface

Shared state must
 be restricted to

 Immutable Data Structures

Shared state must
 be restricted to

 Linearizable Objects

Shared state must
 be restricted to

 Transactional Data Structures

Figure 7.1: Observations about scalable concurrent systems led to the
development of Transactional Data Structures.

These design choices are co-dependent and may be difficult to implement in-

dependently. For example, it is difficult to envisage a concurrent system that im-

plements distributed transaction management efficiently without requiring that

shared state is immutable. Both the strong progress guarantees, required by a

concurrent system that does not implement centralised contention management,

and the appearance of atomic transformations, required by distributed concur-

rency control, are very difficult to implement efficiently unless shared state is

immutable.

8 CONTENTS

7.3 Future work

Transactional Memory designs are based on a common set of priorities, such as

the support for atomic sections, and approaches, such as centralised transaction

management. We identified seven design decisions that are dependent on these

priorities and examined alternative approaches.

How to interact with entities outside the concurrent system?

A useful concurrent application should be able to interact with external enti-

ties. This thesis explores the idea that the interface to shared state should be

presented to the application as an ADT so that an application program can ex-

ecute inevitably. We have found that developing concurrent applications using

our interface is easier than using atomic sections. However, we did not have the

opportunity to evaluate whether our proposal facilitates external communication

in concurrent systems.

Heterogeneous systems are constructed from communicating components so a

programming model for them must support interaction. Message passing is the

predominant concurrent programming model for embedded systems and in this

model processors do not share state.

We suggest that the use of Transactional Data Structures as a state sharing

mechanism for heterogeneous embedded systems should be investigated.

This thesis originated as an investigation into the use of Transactional Mem-

ory as a state sharing mechanism for embedded Chip Multi-Processors without

coherent caches. The original proposal was that shared state could be maintained

in tightly coupled memory and that distributed concurrency control could be used

to ensure its correctness.

We now suggest that Transactional Data Structures can be used to main-

tain shared state in Chip Multi-Processors without coherent caches and that dis-

tributed concurrency control can be used as an alternative to a cache coherence

protocol.

We suggest that Transactional Memory systems should support database type

transactions in memory rather than atomic sections. However, the choice of

programming interface is fundamental to Transactional Memory design, so we

are not optimistic that there is an evolutionary development path from existing

Transactional Memory systems to concurrent systems that permit an application

7.3. FUTURE WORK 9

to interact freely with external entities.

How to maintain shared state and support speculative execution?

A scalable concurrent system should maintain both shared state and isolated

speculative state without increasing the memory bandwidth requirement of the

application. This thesis explores the idea that both shared state and isolated

speculative state can be maintained in an Immutable Data Structure and that

doing so does not increase the memory bandwidth requirement of the application

because immutable values are written only once. There are many ways to imple-

ment Immutable Data Structures and many optimisations that can be applied to

improve their performance, but we were only able to explore a single approach in

any depth.

The Immutable Data Structure infrastructure developed to support the eval-

uation is both original and interesting. The purpose of the infrastructure is to

support Concurrent Memory Transactions without requiring a centralised trans-

action manager. However, a system that supports Immutable Data Structures

in an imperative programming environment can have uses outside the area of

concurrent programming. For example, data structures that permit backtracking

have many useful applications in combinatorics.

We suggest that the use of Immutable Data Structures in an imperative pro-

gramming environment is a fruitful area of research.

The Canonical Binary Tree permits a separation of the concerns of the data

structure from those of the ADT so that the performance of the data structure

can be optimised independent of the ADT that it implements. The performance

of the access functions of Immutable Data Structures can be improved by using

shallower trees with more children per node. The techniques used to develop the

Canonical Binary Tree could be applied to trees with fast merge functions, such

as binomial heaps, to improve the performance of the meld function.

Section ?? describes how the Canonical Binary Tree may be optimised by

both reducing the size of the node and reducing the number of nodes accessed by

common operations. We have not had opportunity to implement these optimisa-

tions.

We suggest that the performance of the Canonical Binary Tree implementation

can easily be improved.

It is not necessary to enforce a cache coherency protocol on immutable data.

10 CONTENTS

However, current Chip Multi-Processor hardware ensures that the entire address

space is cache coherent. When an immutable value is written a cache invalidate

message is sent to all processors unnecessarily. These messages increase the ef-

fective memory bandwidth of the application. Hardware designed specifically to

realise the benefits of immutability might partition memory into non-coherent

regions suitable for maintaining local and immutable data and cache coherent

regions suitable for maintaining the roots of Immutable Data Structures.

We suggest that hardware designed specifically to realise the benefits of im-

mutability can improve the performance of concurrent systems.

Immutable Data Structures consume the memory address space very quickly.

The memory occupied by a leaf of an Immutable Data Structure cannot be re-

turned immediately when it is deleted by the application. Instead, it can be re-

turned when it becomes unreachable. The vertices that cannot be reached from

the root are potential candidates for return but some of these vertices cannot be

returned because they are reachable by tardy functions.

The task of determining whether vertices in an Immutable Data Structure

can be reached and the process of returning them, while the structure is being

accessed, is similar to the task of garbage collection. Jones describes the pro-

cess of garbage collecting managed memories [JL96]. In our implementation the

memory occupied by the vertices of an Immutable Data Structure is returned by

periodically compacting the structure. The return of unreachable values in an

Immutable Data Structure is discussed on our website [Jar11].

We suggest that the management of immutable memory needs to be improved

before Immutable Data Structure can be used in production software.

We suggest that the use of immutable data in existing Transactional Mem-

ory systems should be investigated. However, the choice of the mechanism for

maintaining shared and speculative state is fundamental to a Transactional Mem-

ory design, so we are not optimistic that there is an evolutionary development

path from existing Transactional Memory systems to concurrent systems that

support speculation without increasing the effective memory bandwidth of the

application.

7.3. FUTURE WORK 11

How to provide access to shared state with intuitive concurrent seman-

tics?

Shared state should present an intuitive interface to an application to make con-

current programming easier. This thesis explores the idea that shared state can be

encapsulated by linearizable objects and that Immutable Data Structures can be

composed by Entanglement. We evaluated this idea by implementing a concurrent

algorithm to determine the minimum spanning tree of a graph. We concluded

that the intuitive concurrent semantics of linearizable objects and Immutable

Data Structures have the potential to make the process of developing concurrent

applications easier. We were able to investigate some of the properties of conflu-

ently persistent data structures during our evaluation of a minimum spanning tree

algorithm, but we did not have opportunity the investigate partially persistent

data structures.

We suggest that the properties of partially persistent Transactional Data

Structures should be investigated.

How to implement concurrency control to guarantee correct concurrent

execution?

A scalable concurrent system should implement distributed concurrency control.

This thesis explored the idea that the Time Stamp Ordering concurrency control

protocol can ensure the serialisability of functions acting simultaneously on an

Immutable Data Structure. We were only able to investigate one of the many

ways of imposing a distributed concurrency control protocol on Memory Trans-

actions. We found that implementing concurrency control locally by serialising

simultaneous accesses to a single object is much easier than implementing cen-

tralised concurrency control.

We suggest that the use of distributed concurrency control in existing Trans-

actional Memory systems should be investigated. However, the choice of the con-

currency control mechanism is fundamental to a Transactional Memory design,

so we are not optimistic that there is an evolutionary development path from

existing Transactional Memory systems to concurrent systems that implement

scalable distributed concurrency control.

12 CONTENTS

How to implement contention management to eliminate progress patholo-

gies?

Strong progress guarantees alleviate the need for centralised contention manage-

ment. This thesis explored the idea that functions acting on an Immutable Data

Structure can guarantee lock-free progress. We evaluated an implementation of a

non-blocking Producer Consumer Queue and we found that progress pathologies

were eliminated and that centralised contention management was unnecessary.

A scalable concurrent application must make a strong progress guarantee be-

cause centralised contention management is not scalable, but non-blocking algo-

rithms that rely on mutable shared data are difficult to write. We found that the

development of non-blocking algorithms is made easier by requiring that shared

data is immutable.

We suggest that non-blocking algorithms that focus on immutable data should

be investigated.

How to marshall work and schedule concurrent execution?

A scalable concurrent system has few scheduling requirements. This thesis ex-

plores the idea that the responsibility of the scheduler should be restricted exclu-

sively to that of load-balancing concurrent work and that a scheduler intended

for a parallel workload can be used to schedule Memory Transactions. During

our evaluation of a Producer Consumer Queue we used a parallel scheduler and

found that it was both easy to use and effective.

A system which makes the distinction between a parallel workload, in which

conflicts are statically known not to occur, and a concurrent workload, in which

conflicts are detected dynamically, is not generally useful as both types of work-

load occur in a typical application. A concurrent programming solution should

be capable of scheduling an application containing both parallel and concurrent

work.

We suggest that schedulers intended for parallel work should be used to permit

workload flexibility in concurrent systems.

Functional programming permits concurrent execution because it supports

both parallelism and speculation. However, the problem of dynamically load-

balancing parallel execution remains to be solved. Immutable Data Structures in

the form of purely functional data structures are widely used in the expression of

7.3. FUTURE WORK 13

a functional program but they could also be used to maintain the abstract syntax

tree of a functional program during its execution.

We suggest that the use of Immutable Data Structures as a potential solution

to the dynamic load-balancing problem in functional programming should be

investigated.

How to integrate a concurrent programming solution into the software

development cycle?

A concurrent programming solution should make it economically viable to develop

concurrent applications. This thesis explores the idea that concurrent applica-

tions can be developed using conventional imperative languages, compilers and

tools so as to minimise the impact on existing software and methodologies. We

found that, by focusing on the shared state interface and developing concurrent

applications, rather than transactional systems, we were able to restrict the lo-

cality of changes to those routines that benefit most from concurrent execution.

We suggest that a C++ STL compatible user interface for Immutable Data

Structures should be developed so that programmers can easily integrate these

structures into existing concurrent applications.

14 CONTENTS

7.4 Summary

“The overarching goal [of parallel programming research] should be to make

it easy to write programs that execute efficiently on highly parallel computing

systems” [ABC+06].

We observed that a concurrent program must execute inevitably in order to

communicate, so speculative execution must be restricted to the interface with

shared state. Neither coherent caches nor strong models of memory consistency

scale, so shared state must be immutable. Centralised concurrency control re-

stricts scalability, so a scalable concurrent program must implement distributed

concurrency control, and centralised contention management restricts scalability,

so a scalable concurrent program must guarantee progress.

These observations indicate that scalable concurrent programs are confined to

sharing only immutable data and that scalable concurrent systems are bound to

ensure the correctness of concurrent execution on a per object basis.

We conjectured that a concurrent program that shares only immutable data

and which executes in a system which implements distributed concurrency control

will be both easier to write and more scalable than an equivalent program that

uses mutual exclusion.

We proposed Transactional Data Structures which are an interface to shared

state that permit strongly isolated speculation while allowing programs to exe-

cute inevitably. Transactional Data Structures do not rely on coherent caches

or strong memory consistency models, they are compatible with existing soft-

ware and software development processes, they require only localised changes to

performance critical regions of existing programs and they facilitate the sharing

of immutable data while ensuring correct concurrent execution and guaranteeing

progress.

We evaluated our proposal and concluded that the use of Transactional Data

Structures facilitates both the development of scalable check pointing algorithms

and the construction of simple non-blocking algorithms.

Further research is required before we can determine whether Transactional

Data Structures will make it easy to write programs that execute efficiently on

highly parallel computing systems, but the work we have done so far seems to

indicate that they will.

Bibliography

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Patter-

son, William Lester Plishker, John Shalf, Samuel Webb Williams, and

Katherine A. Yelick. The landscape of parallel computing research:

A view from berkeley. Technical Report UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, December 2006.

[AG95] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-

tency models: A tutorial. IEEE Computer, 29:66–76, 1995.

[Dav02] Paul Davies. That mysterious flow. Scientific American, pages 40–47,

September 2002.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.

[Jar11] Kim Jarvis. Transactional Data Structures.

http://transactionalmemory.com, June 2011.

[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for

Automatic Dynamic Memory Management. John Wiley & Sons, 1996.

15

http://transactionalmemory.com

	The flow of time
	The notion of the flow of time as a global phenomenon
	The notion of the flow of time as a local phenomenon

	Making scalable concurrent programs easier to write
	Future work
	Summary
	Bibliography

