Contents

7.1 Theflowof time. 1
7.1.1 The notion of the flow of time as a global phenomenon . . 1

7.1.2 The notion of the flow of time as a local phenomenon . . . 4

7.2 Making scalable concurrent programs easier to write 6
7.3 Future work 8
T4 SUMMATYo 14
Bibliography 15

7.1 The flow of time

The concurrency problem makes it difficult to write a program that executes
efficiently on a Chip Multi-Processor. This problem arises because information
cannot pass instantly between the processors so each has a different view of the
flow of time. Multi-Processor Systems that treat the flow of time as a global
phenomenon are difficult to program, prone to pathologies and do not scale well,
whereas those that treat time as a local phenomenon have intuitive concurrent

semantics, freedom from progress pathologies and few barriers to scalability.

Our commonsense notion of time is that it flows and that some changes are
simultaneous while others form an ordered sequence and it is a global phenomenon
experienced everywhere in the same way. In this section we consider whether it
is necessary or desirable to enforce this commonsense notion of the flow of time

on a concurrent system.

2 CONTENTS

7.1.1 The notion of the flow of time as a global phe-

nomenon

Concurrent systems attempt to impose a global view of the flow of time by en-

forcing a global ordering on state transitions and by preventing simultaneity.

Speculation about global state transitions

As time passes, events that were once in the future occur in the present moment
and are then relegated to the past. The present moment is the temporal boundary
between the uncertain future and the fixed past. This notion is referred to as the
passage of time.

In a uni-processor system the present moment in time is represented by the
state of memory. However, there is no global present moment in a Multi-Processor
System because information cannot pass instantly between processors.

In a Transactional Memory system speculation centres on the future state of
shared memory. The speculation is that a putative future state created in isolation
does not conflict with any other putative state created by another processor.
Transactional Memory systems weaken isolation to facilitate value sharing and
transactional composition and this blurs the boundary between speculative and
committed state making it difficult to impose a global present moment.

The difficulty of imposing a global temporal boundary between speculative

and shared state is the source of the complex semantics of concurrent systems.

Preventing simultaneity

Simultaneous state transformations must appear simultaneous to all observers.
This notion is referred to as absolute simultaneity.

In a uni-processor system the lack of coherence between components in the
memory hierarchy goes unnoticed by the application. However, in a Multi-
Processor System it is difficult to guarantee that state transformations, that may
appear simultaneous to an application executing on some processors, appear si-
multaneous to all processors.

Mutual exclusion prevents processors from simultaneously accessing the same
memory location by blocking the execution of some processors, but this obstructs

progress and is the source of progress pathologies.

7.1. THE FLOW OF TIME 3

A Transactional Memory system prevents processors from simultaneously ac-
cessing the same memory location by ensuring that only one of the conflicting
transactions succeeds. To achieve this the system must maintain both the specu-
lative and a committed version of the same memory location which increases the
effective memory bandwidth of the application.

The difficulty of imposing absolute simultaneity is a source of both the progress
pathologies and the high memory bandwidth requirement of concurrent applica-

tions.

Enforcing a global ordering on state transitions

Events form a uni-directional sequence in time which is a consequence of the
second law of thermodynamics. The arrow of time denotes an asymmetry between
the future and the past that imposes a global ordering on state transformations.

In a uni-processor system successive states of memory form a uni-directional
sequence, so execution can be seen as an ordered sequence of state transitions.
However, there is no global ordering of state transformations in a Multi-Processor
System because information cannot pass instantly between its components.

A Transactional Memory system implements a concurrency control protocol
to impose a global order on state transitions so that their effect on shared state
is equivalent to a serial execution. A centralised transaction manager is required
to impose a global ordering and this restricts scalability.

The difficulty of imposing a global ordering on state transitions is the source

of the scaling restrictions on concurrent systems.

Memory Transactions are not like database transactions

Few people in the computer architecture community believe that strong mod-
els of memory consistency are scalable. Modern Chip Multi-Processors impose
neither the concept of a global present moment nor the concept of absolute si-
multaneity, except when processing instructions with associated memory barriers.
Weakly consistent memory models, such as total store ordering, remove the need
to impose a global ordering of events [AG95]. However, most database systems
implement strong consistency models and many people in the database commu-
nity believe that a global ordering of events is essential for programmers to write
concurrent programs. Imposing a global view of the flow of time is the primary

purpose of the transaction manager in a database system [GR93].

4 CONTENTS

Transactional Memory has inherited the idea that a framework for speculative
execution must impose a commonsense notion of the flow of time. The idea is so
pervasive that few have questioned it. The conclusion of this thesis is that it is
neither necessary nor desirable to enforce a global view of the flow of time on a

concurrent system.

7.1.2 The notion of the flow of time as a local phenomenon

This thesis proposes that a Multi-Processor System should treat the flow of time
as a local phenomenon because information cannot pass instantly from one place
to another. A local notion of time does not invoke the concept of a global present
moment and only requires that simultaneity is relative and that events and ob-
servations are only ordered in relation to each other.

Davies provides an accessible introduction to the distinction between a local

and a global concept of the flow of time [Dav02].

Speculation about events and observations

If we accept that the passage of time is a local phenomenon affecting events
and observations rather than states then there is no global present moment and
speculation can be restricted to events and their observation.

This thesis describes a concurrent system in which there is no concept of a
global present moment separating the past from the future. When this concept
is removed speculation can centre on events and their observation, rather than
about states. The speculation is that an event does not change an observation
that has already been made. When speculation is restricted to events it is not
necessary to impose a global temporal boundary between speculative and shared
state.

The access functions of a Transactional Data Structure execute speculatively
and the speculation is that the execution of the access function does not affect
any value that has already been returned to the application. The concurrent
semantics of the access functions of a Transactional Data Structure are intuitive
because the functions acting on the Transactional Data Structure are strongly
isolated from each other and their effects on the structure are strictly serialisable.

By speculating about events and observations affecting a single object con-

current systems with intuitive concurrent semantics can be constructed.

7.1. THE FLOW OF TIME 5

Permitting simultaneity

If we accept that simultaneity is relative, and that events that occur at the same
moment in time when observed from one frame of reference may occur at different
moments if viewed from another, then there is no requirement to either restrict
simultaneity or to enforce it.

This thesis describes a concurrent system in which simultaneity is relative and
this differs from a system that restricts or enforces simultaneous state transitions.
When simultaneity is relative it is neither necessary to ensure that a mutation is
observed simultaneously by all processors nor prevent multiple processors from
simultaneously accessing the same object.

The access functions of a Transactional Data Structure permit simultaneous
access to data because that data is immutable. Immutable data is timeless and
it can be simultaneously accessed by multiple processors safely. Immutable data
is written just once so speculation does not increase the memory bandwidth of
the application. The access functions of a Transactional Data Structure do not
restrict simultaneous events by blocking the execution of another processor so
they do not restrict progress and are not prone to progress pathologies.

By accepting that simultaneity is relative it is possible to construct a concur-
rent program that is free from progress pathologies and that does not have an

increased memory bandwidth requirement when executing on multiple processors.

Speculation about a local order of events

If we accept that the arrow of time is a local phenomenon referring to the rela-
tionship between an event and its observation then there is no concept of a global
ordering of events so order can be enforced locally.

This thesis describes a concurrent system which imposes a local ordering on
the events affecting a particular object and this differs from the imposition of
a global ordering on state transitions. A locally serialisable ordering of events
affecting a particular object can be ensured by making that object linearizable.

The access functions of a Transactional Data Structure enforce an ordering
on the events that affect the data structure. A concurrent system that does not
impose a global ordering of events lends itself to a distributed implementation
and permits scalability.

By implementing distributed concurrency control it is possible to construct a

scalable concurrent system.

6 CONTENTS

7.2 Making scalable concurrent programs easier

to write

This thesis proposes that pure functions, immutable data and Memory Trans-
actions can be combined to create a programming model that makes scalable
concurrent programs easier to write. It is grounded on the observation that a
scalable concurrent program must be able to interact with an external entity
and it must guarantee progress. It also makes the observation that a scalable
concurrent system must not rely on coherent caches, strong memory models or

centralised transaction management.

Application programmers expect their programs to execute inevitably. How-
ever, a scalable concurrent system must support speculative execution so spec-
ulation must be restricted to the interface with shared state. There are many
ways to present a speculative interface to shared state but familiar ADT's are the
interface that programmers expect, so the design of the shared interface follows

from programmer expectations.

The memory bandwidth of a scalable concurrent application must be inde-
pendent of the number of processors participating in its execution. Engineering
barriers, such as the difficulty of scaling coherent caches, restrict the scalability
of systems that support mutable shared state, so in a scalable concurrent system
shared state must be immutable. There are many ways to implement immutable
data, but Immutable Data Structures based on the Canonical Binary Tree are

the simplest.

Distributed transaction management is scalable, whereas centralised transac-
tion management is not. Programmers must abandon the concept of globally
serialisable state transitions because distributed concurrency control can only en-
sure the correctness of concurrent accesses to individual objects. Linearizability
is a correctness condition for objects which provides behaviour that programmers
expect. Concurrent applications must make strong progress guarantees, because
contention management is not scalable. The requirement that transaction man-
agement must be distributed dictates both the nature of the interface to shared

state and the progress guarantees offered by the application.

Figure 7.1 illustrates how observations about scalable concurrent systems led

to the development of Transactional Data Structures.

7.2. MAKING SCALABLE CONCURRENT PROGRAMS EASIER TO WRITE7

Software Hardware Systems
Engineering Engineering Engineering
Observation Observation Observation
Application must Centralised Centralised
interact with contention management concurrency control
external entity is not scalable is not scalable
Application Strong memory models Coherent caches
execution must are not scalable are not scalable
be inevitable
Speculation must Application must make System must implement
be restricted to strong progress guarntee Distributed concurrency
shared state interface control
Shared state
must be immutable
Shared state must Shared state must
be restricted to be restricted to
Immutable Data Structures Linearizable Objects

Shared state must
be restricted to
Transactional Data Structures

Figure 7.1: Observations about scalable concurrent systems led to the
development of Transactional Data Structures.

These design choices are co-dependent and may be difficult to implement in-
dependently. For example, it is difficult to envisage a concurrent system that im-
plements distributed transaction management efficiently without requiring that
shared state is immutable. Both the strong progress guarantees, required by a
concurrent system that does not implement centralised contention management,
and the appearance of atomic transformations, required by distributed concur-
rency control, are very difficult to implement efficiently unless shared state is

immutable.

8 CONTENTS

7.3 Future work

Transactional Memory designs are based on a common set of priorities, such as
the support for atomic sections, and approaches, such as centralised transaction
management. We identified seven design decisions that are dependent on these

priorities and examined alternative approaches.

How to interact with entities outside the concurrent system?

A useful concurrent application should be able to interact with external enti-
ties. This thesis explores the idea that the interface to shared state should be
presented to the application as an ADT so that an application program can ex-
ecute inevitably. We have found that developing concurrent applications using
our interface is easier than using atomic sections. However, we did not have the
opportunity to evaluate whether our proposal facilitates external communication
in concurrent systems.

Heterogeneous systems are constructed from communicating components so a
programming model for them must support interaction. Message passing is the
predominant concurrent programming model for embedded systems and in this
model processors do not share state.

We suggest that the use of Transactional Data Structures as a state sharing
mechanism for heterogeneous embedded systems should be investigated.

This thesis originated as an investigation into the use of Transactional Mem-
ory as a state sharing mechanism for embedded Chip Multi-Processors without
coherent caches. The original proposal was that shared state could be maintained
in tightly coupled memory and that distributed concurrency control could be used
to ensure its correctness.

We now suggest that Transactional Data Structures can be used to main-
tain shared state in Chip Multi-Processors without coherent caches and that dis-
tributed concurrency control can be used as an alternative to a cache coherence
protocol.

We suggest that Transactional Memory systems should support database type
transactions in memory rather than atomic sections. However, the choice of
programming interface is fundamental to Transactional Memory design, so we
are not optimistic that there is an evolutionary development path from existing

Transactional Memory systems to concurrent systems that permit an application

7.3. FUTURE WORK 9

to interact freely with external entities.

How to maintain shared state and support speculative execution?

A scalable concurrent system should maintain both shared state and isolated
speculative state without increasing the memory bandwidth requirement of the
application. This thesis explores the idea that both shared state and isolated
speculative state can be maintained in an Immutable Data Structure and that
doing so does not increase the memory bandwidth requirement of the application
because immutable values are written only once. There are many ways to imple-
ment Immutable Data Structures and many optimisations that can be applied to
improve their performance, but we were only able to explore a single approach in
any depth.

The Immutable Data Structure infrastructure developed to support the eval-
uation is both original and interesting. The purpose of the infrastructure is to
support Concurrent Memory Transactions without requiring a centralised trans-
action manager. However, a system that supports Immutable Data Structures
in an imperative programming environment can have uses outside the area of
concurrent programming. For example, data structures that permit backtracking
have many useful applications in combinatorics.

We suggest that the use of Immutable Data Structures in an imperative pro-
gramming environment is a fruitful area of research.

The Canonical Binary Tree permits a separation of the concerns of the data
structure from those of the ADT so that the performance of the data structure
can be optimised independent of the ADT that it implements. The performance
of the access functions of Immutable Data Structures can be improved by using
shallower trees with more children per node. The techniques used to develop the
Canonical Binary Tree could be applied to trees with fast merge functions, such
as binomial heaps, to improve the performance of the meld function.

Section ?? describes how the Canonical Binary Tree may be optimised by
both reducing the size of the node and reducing the number of nodes accessed by
common operations. We have not had opportunity to implement these optimisa-
tions.

We suggest that the performance of the Canonical Binary Tree implementation
can easily be improved.

It is not necessary to enforce a cache coherency protocol on immutable data.

10 CONTENTS

However, current Chip Multi-Processor hardware ensures that the entire address
space is cache coherent. When an immutable value is written a cache invalidate
message is sent to all processors unnecessarily. These messages increase the ef-
fective memory bandwidth of the application. Hardware designed specifically to
realise the benefits of immutability might partition memory into non-coherent
regions suitable for maintaining local and immutable data and cache coherent

regions suitable for maintaining the roots of Immutable Data Structures.

We suggest that hardware designed specifically to realise the benefits of im-

mutability can improve the performance of concurrent systems.

Immutable Data Structures consume the memory address space very quickly.
The memory occupied by a leaf of an Immutable Data Structure cannot be re-
turned immediately when it is deleted by the application. Instead, it can be re-
turned when it becomes unreachable. The vertices that cannot be reached from
the root are potential candidates for return but some of these vertices cannot be

returned because they are reachable by tardy functions.

The task of determining whether vertices in an Immutable Data Structure
can be reached and the process of returning them, while the structure is being
accessed, is similar to the task of garbage collection. Jones describes the pro-
cess of garbage collecting managed memories [JL96]. In our implementation the
memory occupied by the vertices of an Immutable Data Structure is returned by
periodically compacting the structure. The return of unreachable values in an

Immutable Data Structure is discussed on our website [Jarl1].

We suggest that the management of immutable memory needs to be improved

before Immutable Data Structure can be used in production software.

We suggest that the use of immutable data in existing Transactional Mem-
ory systems should be investigated. However, the choice of the mechanism for
maintaining shared and speculative state is fundamental to a Transactional Mem-
ory design, so we are not optimistic that there is an evolutionary development
path from existing Transactional Memory systems to concurrent systems that
support speculation without increasing the effective memory bandwidth of the

application.

7.3. FUTURE WORK 11

How to provide access to shared state with intuitive concurrent seman-

tics?

Shared state should present an intuitive interface to an application to make con-
current programming easier. This thesis explores the idea that shared state can be
encapsulated by linearizable objects and that Immutable Data Structures can be
composed by Entanglement. We evaluated this idea by implementing a concurrent
algorithm to determine the minimum spanning tree of a graph. We concluded
that the intuitive concurrent semantics of linearizable objects and Immutable
Data Structures have the potential to make the process of developing concurrent
applications easier. We were able to investigate some of the properties of conflu-
ently persistent data structures during our evaluation of a minimum spanning tree
algorithm, but we did not have opportunity the investigate partially persistent

data structures.

We suggest that the properties of partially persistent Transactional Data

Structures should be investigated.

How to implement concurrency control to guarantee correct concurrent

execution?

A scalable concurrent system should implement distributed concurrency control.
This thesis explored the idea that the Time Stamp Ordering concurrency control
protocol can ensure the serialisability of functions acting simultaneously on an
Immutable Data Structure. We were only able to investigate one of the many
ways of imposing a distributed concurrency control protocol on Memory Trans-
actions. We found that implementing concurrency control locally by serialising
simultaneous accesses to a single object is much easier than implementing cen-

tralised concurrency control.

We suggest that the use of distributed concurrency control in existing Trans-
actional Memory systems should be investigated. However, the choice of the con-
currency control mechanism is fundamental to a Transactional Memory design,
so we are not optimistic that there is an evolutionary development path from
existing Transactional Memory systems to concurrent systems that implement

scalable distributed concurrency control.

12 CONTENTS

How to implement contention management to eliminate progress patholo-

gies?

Strong progress guarantees alleviate the need for centralised contention manage-
ment. This thesis explored the idea that functions acting on an Immutable Data
Structure can guarantee lock-free progress. We evaluated an implementation of a
non-blocking Producer Consumer Queue and we found that progress pathologies
were eliminated and that centralised contention management was unnecessary.

A scalable concurrent application must make a strong progress guarantee be-
cause centralised contention management is not scalable, but non-blocking algo-
rithms that rely on mutable shared data are difficult to write. We found that the
development of non-blocking algorithms is made easier by requiring that shared
data is immutable.

We suggest that non-blocking algorithms that focus on immutable data should

be investigated.

How to marshall work and schedule concurrent execution?

A scalable concurrent system has few scheduling requirements. This thesis ex-
plores the idea that the responsibility of the scheduler should be restricted exclu-
sively to that of load-balancing concurrent work and that a scheduler intended
for a parallel workload can be used to schedule Memory Transactions. During
our evaluation of a Producer Consumer Queue we used a parallel scheduler and
found that it was both easy to use and effective.

A system which makes the distinction between a parallel workload, in which
conflicts are statically known not to occur, and a concurrent workload, in which
conflicts are detected dynamically, is not generally useful as both types of work-
load occur in a typical application. A concurrent programming solution should
be capable of scheduling an application containing both parallel and concurrent
work.

We suggest that schedulers intended for parallel work should be used to permit
workload flexibility in concurrent systems.

Functional programming permits concurrent execution because it supports
both parallelism and speculation. However, the problem of dynamically load-
balancing parallel execution remains to be solved. Immutable Data Structures in

the form of purely functional data structures are widely used in the expression of

7.3. FUTURE WORK 13

a functional program but they could also be used to maintain the abstract syntax
tree of a functional program during its execution.

We suggest that the use of Immutable Data Structures as a potential solution
to the dynamic load-balancing problem in functional programming should be

investigated.

How to integrate a concurrent programming solution into the software

development cycle?

A concurrent programming solution should make it economically viable to develop
concurrent applications. This thesis explores the idea that concurrent applica-
tions can be developed using conventional imperative languages, compilers and
tools so as to minimise the impact on existing software and methodologies. We
found that, by focusing on the shared state interface and developing concurrent
applications, rather than transactional systems, we were able to restrict the lo-
cality of changes to those routines that benefit most from concurrent execution.

We suggest that a C++ STL compatible user interface for Immutable Data
Structures should be developed so that programmers can easily integrate these

structures into existing concurrent applications.

14 CONTENTS

7.4 Summary

“The overarching goal | of parallel programming research | should be to make
it easy to write programs that execute efficiently on highly parallel computing
systems” [ABC106].

We observed that a concurrent program must execute inevitably in order to
communicate, so speculative execution must be restricted to the interface with
shared state. Neither coherent caches nor strong models of memory consistency
scale, so shared state must be immutable. Centralised concurrency control re-
stricts scalability, so a scalable concurrent program must implement distributed
concurrency control, and centralised contention management restricts scalability,
so a scalable concurrent program must guarantee progress.

These observations indicate that scalable concurrent programs are confined to
sharing only immutable data and that scalable concurrent systems are bound to
ensure the correctness of concurrent execution on a per object basis.

We conjectured that a concurrent program that shares only immutable data
and which executes in a system which implements distributed concurrency control
will be both easier to write and more scalable than an equivalent program that
uses mutual exclusion.

We proposed Transactional Data Structures which are an interface to shared
state that permit strongly isolated speculation while allowing programs to exe-
cute inevitably. Transactional Data Structures do not rely on coherent caches
or strong memory consistency models, they are compatible with existing soft-
ware and software development processes, they require only localised changes to
performance critical regions of existing programs and they facilitate the sharing
of immutable data while ensuring correct concurrent execution and guaranteeing
progress.

We evaluated our proposal and concluded that the use of Transactional Data
Structures facilitates both the development of scalable check pointing algorithms
and the construction of simple non-blocking algorithms.

Further research is required before we can determine whether Transactional
Data Structures will make it easy to write programs that execute efficiently on
highly parallel computing systems, but the work we have done so far seems to
indicate that they will.

Bibliography

[ABCT06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

[AG95)

[Dav02]

[GR93]

[Jarll]

[JL96]

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Patter-
son, William Lester Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. The landscape of parallel computing research:
A view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, December 2006.

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. IEEE Computer, 29:66-76, 1995.

Paul Davies. That mysterious flow. Scientific American, pages 4047,
September 2002.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.

Kim Jarvis. Transactional Data Structures.

http://transactionalmemory.com, June 2011.

Richard Jones and Rafael Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, 1996.

15

http://transactionalmemory.com

	The flow of time
	The notion of the flow of time as a global phenomenon
	The notion of the flow of time as a local phenomenon

	Making scalable concurrent programs easier to write
	Future work
	Summary
	Bibliography

