Contents

3.2 Immutable Data Structures .

3.2.1
3.2.2
3.2.3

Bibliography

Supporting Speculation

Immutable Data Structures

Immutability and Concurrency

W W NN

2 CONTENTS

3.2 Immutable Data Structures

To support scalable execution a concurrent system should support speculation
without increasing the effective memory bandwidth of the program. A solution
should facilitate concurrent access to shared data while requiring that values are
written to main memory only once. Immutable data is necessarily written to
main memory only once so we propose that Immutable Data Structures can act
as repositories of both speculative and shared state. Immutable Data Structures
have not previously been considered in the context of concurrent execution so
support for them must be developed before this proposal can be evaluated.

The problem is to find a mechanism for maintaining speculative and shared
state in memory. The solution should support the isolation of speculative state
and the atomic transformation of speculative state into shared state. It should
also support simultaneous access to shared state and require that data values be
written to main memory once only.

This section identifies Immutable Data Structures as candidate repositories
of shared state in concurrent systems and examines techniques for maintaining

both speculative and shared state in Immutable Data Structures.

3.2.1 Supporting Speculation

To support speculation a mechanism to isolate speculative state and permit its
atomic transformation into shared state is required. This mechanism should
afford scalable concurrency without increasing the effective memory bandwidth
of the program.

The mechanism should support the isolation of speculative state from other
functions executing concurrently. Only the process that wrote the state specu-
latively should be able to observe it. The mechanism should also ensure that a
function observes a consistent view of shared state. Consistency criteria must be
met at the point speculative state becomes shared state.

The mechanism should support the atomic transformation of speculative state
into shared state. In a Chip Multi-Processor the only mechanism for performing
an atomic action is an atomic instruction, so the transformation of speculative
state into shared state must be implemented by an atomic instruction.

Typically, atomic instructions act on only one word in memory. The atomic

transformation of isolated multi-word values into shared values can be achieved by

3.2. IMMUTABLE DATA STRUCTURES 3

atomically updating a reference to those values instead of the values themselves.
To enable atomic transformation, to shared state, speculative state should be
identified by a single reference and this reference should be modified by an atomic
instruction.

An atomic instruction typically implements a memory barrier to ensure that
any memory writes, buffered by the processor, are completed and that caches
are coherent during the execution of the atomic instruction. The memory bar-
rier ensures that the speculative state identified by the reference appears to be

atomically transformed into shared state.

3.2.2 Immutable Data Structures

Immutable Data Structures provide a solution to the problem of maintaining
both speculative and shared state. Paths within an Immutable Data Structure
can be isolated until the mutable reference to the data structure is modified by an
atomic instruction so functions acting on Immutable Data Structure can benefit
from isolation and atomicity provided by the structures themselves.

Figure 3.1 illustrates the insertion and removal of an element in an immutable
binary tree. The functions cause a new path to be created within the data
structure but do not change any of the existing values. A version of a data
structure is identified by a mutable reference. The data structure does not change
per se. Instead, a new version is created by copying data and modifying the

reference.

3.2.3 Immutability and Concurrency

In this section we describe how certainty that shared data within an Immutable
Data Structure is immutable enables a program to access it concurrently.
Immutable Data Structures provide a medium for maintaining immutable
shared state within the data structure itself. Immutable Data Structures also
provide a medium for maintaining isolated speculative state, in the form of the
values written by an access function. The mutable reference to the data structure
is modified by an atomic instruction and this causes the speculative state, created
in isolation by the access function, to be transformed atomically into shared state.
Concurrent accesses to mutable data structures must be coordinated for two

reasons. Firstly to protect the integrity of the data structure itself and secondly

4 CONTENTS

Figure 3.1: Insertion and deletion from an immutable binary tree. The
shaded vertices represent the path created by the operation. An ellipse with
a double border represents a mutable reference to a version of the Immutable
Data Structure. Version VO of the immutable binary tree contains the elements
{r,s,t,u,v, w}.

(a) Insertion of an element ¢ into an immutable binary tree creates version V1
containing the elements {q, 7, s,t,u,v,w}.

(b) Removal of the element w from an immutable binary tree creates version V2
containing the elements {r, s, t, u,v}.

3.2. IMMUTABLE DATA STRUCTURES 5

to ensure the correct semantic order of operation. An Immutable Data Structure
distinguishes between the structural consistency criteria of the data structure and
the semantic consistency criteria of the application data. However, Immutable
Data Structures do not offer a mechanism for ensuring the correct ordering of the
effects of concurrent operations. A mechanism to ensure this ordering is presented

in subsequent chapters.

Bibliography

	Immutable Data Structures
	Supporting Speculation
	Immutable Data Structures
	Immutability and Concurrency

	Bibliography

