
Contents

3.2 Immutable Data Structures . 2

3.2.1 Supporting Speculation . 2

3.2.2 Immutable Data Structures 3

3.2.3 Immutability and Concurrency 3

Bibliography 6

1

2 CONTENTS

3.2 Immutable Data Structures

To support scalable execution a concurrent system should support speculation

without increasing the effective memory bandwidth of the program. A solution

should facilitate concurrent access to shared data while requiring that values are

written to main memory only once. Immutable data is necessarily written to

main memory only once so we propose that Immutable Data Structures can act

as repositories of both speculative and shared state. Immutable Data Structures

have not previously been considered in the context of concurrent execution so

support for them must be developed before this proposal can be evaluated.

The problem is to find a mechanism for maintaining speculative and shared

state in memory. The solution should support the isolation of speculative state

and the atomic transformation of speculative state into shared state. It should

also support simultaneous access to shared state and require that data values be

written to main memory once only.

This section identifies Immutable Data Structures as candidate repositories

of shared state in concurrent systems and examines techniques for maintaining

both speculative and shared state in Immutable Data Structures.

3.2.1 Supporting Speculation

To support speculation a mechanism to isolate speculative state and permit its

atomic transformation into shared state is required. This mechanism should

afford scalable concurrency without increasing the effective memory bandwidth

of the program.

The mechanism should support the isolation of speculative state from other

functions executing concurrently. Only the process that wrote the state specu-

latively should be able to observe it. The mechanism should also ensure that a

function observes a consistent view of shared state. Consistency criteria must be

met at the point speculative state becomes shared state.

The mechanism should support the atomic transformation of speculative state

into shared state. In a Chip Multi-Processor the only mechanism for performing

an atomic action is an atomic instruction, so the transformation of speculative

state into shared state must be implemented by an atomic instruction.

Typically, atomic instructions act on only one word in memory. The atomic

transformation of isolated multi-word values into shared values can be achieved by

3.2. IMMUTABLE DATA STRUCTURES 3

atomically updating a reference to those values instead of the values themselves.

To enable atomic transformation, to shared state, speculative state should be

identified by a single reference and this reference should be modified by an atomic

instruction.

An atomic instruction typically implements a memory barrier to ensure that

any memory writes, buffered by the processor, are completed and that caches

are coherent during the execution of the atomic instruction. The memory bar-

rier ensures that the speculative state identified by the reference appears to be

atomically transformed into shared state.

3.2.2 Immutable Data Structures

Immutable Data Structures provide a solution to the problem of maintaining

both speculative and shared state. Paths within an Immutable Data Structure

can be isolated until the mutable reference to the data structure is modified by an

atomic instruction so functions acting on Immutable Data Structure can benefit

from isolation and atomicity provided by the structures themselves.

Figure 3.1 illustrates the insertion and removal of an element in an immutable

binary tree. The functions cause a new path to be created within the data

structure but do not change any of the existing values. A version of a data

structure is identified by a mutable reference. The data structure does not change

per se. Instead, a new version is created by copying data and modifying the

reference.

3.2.3 Immutability and Concurrency

In this section we describe how certainty that shared data within an Immutable

Data Structure is immutable enables a program to access it concurrently.

Immutable Data Structures provide a medium for maintaining immutable

shared state within the data structure itself. Immutable Data Structures also

provide a medium for maintaining isolated speculative state, in the form of the

values written by an access function. The mutable reference to the data structure

is modified by an atomic instruction and this causes the speculative state, created

in isolation by the access function, to be transformed atomically into shared state.

Concurrent accesses to mutable data structures must be coordinated for two

reasons. Firstly to protect the integrity of the data structure itself and secondly

4 CONTENTS

V1 V0

t usr v wq

(a)

V0 V2

t u vr s w

(b)

Figure 3.1: Insertion and deletion from an immutable binary tree. The
shaded vertices represent the path created by the operation. An ellipse with
a double border represents a mutable reference to a version of the Immutable
Data Structure. Version V0 of the immutable binary tree contains the elements
{r, s, t, u, v, w}.
(a) Insertion of an element q into an immutable binary tree creates version V1
containing the elements {q, r, s, t, u, v, w}.
(b) Removal of the element w from an immutable binary tree creates version V2
containing the elements {r, s, t, u, v}.

3.2. IMMUTABLE DATA STRUCTURES 5

to ensure the correct semantic order of operation. An Immutable Data Structure

distinguishes between the structural consistency criteria of the data structure and

the semantic consistency criteria of the application data. However, Immutable

Data Structures do not offer a mechanism for ensuring the correct ordering of the

effects of concurrent operations. A mechanism to ensure this ordering is presented

in subsequent chapters.

Bibliography

6

	Immutable Data Structures
	Supporting Speculation
	Immutable Data Structures
	Immutability and Concurrency

	Bibliography

