Contents

2.3 Compatibility

2.3.1 Disruptive changes to existing software

2.3.2 Compatibility with existing software

2.3.3 Making concurrent programs easier to write

Bibliography

= W NN

2 CONTENTS

2.3 Compatibility

A solution to the concurrency problem must be compatible with existing pro-
grams and software development processes. Unfortunately, the changes needed
to support concurrent execution are not always confined to the performance crit-
ical regions of the program. This section explores how the compatibility criterion
restricts the design space of concurrent programming solutions.

The sole reason for writing a concurrent program is to obtain speed-up from
the performance-critical regions of a program that can benefit from parallel exe-
cution. These regions are only a small part of most programs and a solution to
the concurrency problem should only apply to these regions.

The main contribution of this section is the recognition that the potential ben-
efits of concurrent execution are rarely compelling enough to justify disrupting
existing software development processes or completely re-writing existing pro-
grams. This section focuses on defining the scope of possible solutions to the

concurrency problem that are compatible with existing software.

2.3.1 Disruptive changes to existing software

The benefit of exploiting concurrency must exceed the costs associated with im-
plementing it.

Section 2.3.3 explains why a worthwhile concurrent programming solution
must improve total software development productivity.

Research into concurrent programming tends to focus on obtaining speed-up
from the concurrent execution of regions of a program that benefit from it while
giving little consideration to the impact on those regions of a program that do
not. To be compatible with existing software a concurrent programming solution
must only affect the regions of a program that benefit from concurrent execution.

To stand a realistic chance of adoption a concurrent programming solution
should be compatible with existing software, libraries, operating systems, devel-
opment tools and hardware.

Parallel programming is a mechanism for reducing the elapsed execution time
of a program when the task dependencies are known, whereas concurrent pro-
gramming addresses the cases when task dependencies cannot be known until

the program is executed. Regions that benefit from parallel execution can occur

2.3. COMPATIBILITY 3

in the same application program as those that benefit from concurrent execu-
tion, so a concurrent programming solution should be compatible with a parallel
programming solution.

During the unit testing phase of application development it must be possible
to reproduce a problem for debugging purposes, during the acceptance testing
phase it must be possible to stimulate all possible program behaviours and in
production it must be possible to capture a program’s behaviour so that errors can
be reproduced. To be compatible with existing software a concurrent application
must exhibit reproducible behaviour, so that it can be integrated into existing
testing methodologies.

Thus, a concurrent programming solution must be locally applicable, compat-
ible with existing software and development processes, compatible with a parallel

programming solution and compatible with existing testing methodologies.

2.3.2 Compatibility with existing software

A concurrent programming methodology should be applicable locally and it should
not be necessary to structure a program around the requirements of those regions
that it is beneficial to execute concurrently. We found that, by focusing on the
shared state interface and developing concurrent applications, rather than con-
current systems, we were able to restrict the locality of program changes to those
routines that benefit most from concurrent execution.

A concurrent programming solution should be implemented in software, with-
out requiring changes to the compiler, the operating system or the software de-
velopment tool chain. We developed a concurrent programming solution in C++.
The use of a conventional imperative language, compiler and development tool
chain minimises the impact on existing programming methodologies.

A concurrent programming solution should be compatible with a parallel pro-
gramming solution. We focus on providing compatibility with the Threading
Building Blocks library [Int09]. Threading Building Blocks is an integrated paral-
lel programming solution for Chip Multi-Processors. Our solution allows Thread-
ing Building Blocks to schedule both tasks that are known to be independent and
tasks that may contain conflicting memory operations.

A concurrent execution environment should ensure reproducible application
behaviour. We focus on using time stamps to ensure the correctness of concurrent

execution. Time stamps can be used to ensure reproducible behaviour and to

4 CONTENTS

determine the relationship between tasks during the problem solving process.

2.3.3 Making concurrent programs easier to write

The goal of research into concurrent programming is to make it easier to create
scalable concurrent programs. To achieve this goal, the benefit from the reduction
in the execution time of a concurrent program, relative to an equivalent serial
program, must exceed the total cost associated with making that program execute
concurrently.

A technique that makes program coding easier might make a program more
difficult to debug offsetting any programmer productivity gains. Any proposal to
make programming easier should improve productivity when amortised over the
entire development process including: program design, coding, debugging, test-
ing, operation and maintenance. The benefits of a new programming technique
must also exceed the costs associated with learning it and the cost of rectifying
mistakes made when it is applied incorrectly.

Regions of many types of application may benefit from concurrent execution,
so the challenge is to integrate techniques to support concurrency into existing
programming environments in such a way that utilising concurrency in those

regions is worthwhile.

Bibliography

[Int09] Intel. Intel Threading Building Blocks: Programming for Current and
Future Multicore Platforms. IEEE/ACM International Symposium on
Code Generation and Optimization, July 2009.

	Compatibility
	Disruptive changes to existing software
	Compatibility with existing software
	Making concurrent programs easier to write

	Bibliography

