
Contents

2.1 Concurrent IO . 2

2.1.1 The interaction with external entities 2

2.1.2 The Database Programming Model 3

2.1.3 Atomic Sections . 4

2.1.4 Previous work . 6

2.1.5 The Client Server Database Model 7

2.1.6 Heterogeneous Processors 8

Bibliography 10

1

2 CONTENTS

2.1 Concurrent IO

The difficulty of presenting a consistent view of shared state to entities outside

the control of a program is central to the problem of concurrent programming.

A solution to this problem defines the structure of the concurrent program and

the nature of the interface with shared state. Concurrent programs do not exist

in isolation, they interact with the Operating System, the Network and human

interfaces. The requirements for the interaction with entities outside the control

of the system should be a primary design concern of any concurrent system.

Concurrent programs that conform to the database programming model present

a consistent view of shared state to their external interfaces. A concurrent pro-

gramming model for Chip Multi-Processors can be developed from the database

programming model.

The main contribution of this section is the identification of the features of

the database programming model that facilitate interaction with external en-

tities. This section focuses on adapting these features to create a concurrent

programming model for a Chip Multi-Processor.

2.1.1 The interaction with external entities

Transactional Memory systems do not treat the interaction with external entities

as a primary design priority. In fact many Transactional Memory systems do not

present any solution for interaction with external entities, other than to support

the output of a result at the end of program execution.

A concurrent program must conduct a serial interaction to each outside entity.

There must actually be a causal, “happens before”, relationship between events

and their responses and concurrent programs must be built around this causal

relationship. It is not possible for a concurrent program to interact with an

external entity while it is executing speculatively. Speculative execution may

be aborted and restarted, its effects on shared state are speculative and can be

undone. However, the interaction with an external entity cannot be undone so

this interaction must be restricted to those parts of a concurrent program that

are executed inevitably.

A concurrent program presents the appearance of a serialisable interaction

with shared state. There must appear to be a causal, “happens before”, relation-

ship between events and their responses from the point of view of a particular

2.1. CONCURRENT IO 3

external entity.

The requirements of the interaction with external entities dictate both the

structure of the concurrent program and the nature of its interface with shared

state. The causal relationships required by external interaction cannot easily be

engineered into a system designed with other priorities.

Transactional Memory systems execute some program code speculatively within

an atomic section, which prevents the program from interacting freely with ex-

ternal entities.

Section 2.1.3 discusses atomic sections.

The problem of presenting a consistent view of shared state to entities outside

the control of the concurrent program has been successfully solved by the database

programming model which describes how a concurrent system should interact

with external entities.

Both the Database programming model and the Transactional Memory pro-

gramming model rely on a transactional approach to concurrent processing. They

are targeted at different problem areas and assign different priorities to design cri-

teria. The main difference between them is that the database model regards the

concurrent interaction with the client as the primary design concern and regards

concurrency as a performance enhancement, whereas Transactional Memory re-

gards concurrent performance as the primary design goal.

Many Chip Multi-Processor systems, such as those used in embedded systems,

are heterogeneous. These systems consist of isolated components that communi-

cate with each other thereby internalising the problem of interaction.

Section 2.1.6 discusses the difficulty of writing concurrent applications for

heterogeneous processors.

2.1.2 The Database Programming Model

This section identifies features of the database programming model that facilitate

external interaction and adapts them to create a concurrent programming model

for Chip Multi-Processors. It suggests that a program that executes inevitably

can present a consistent view of shared state to external entities.

A database application program executes inevitably and restricts speculation

to the interaction with the database, whilst allowing the application to interact

freely with external entities. The proposal is that a concurrent program should

execute inevitably and that speculative execution should be restricted to the

4 CONTENTS

interaction with shared state.

A database system isolates shared state from an application by implementing

the client server model, thereby allowing the interaction with shared state to be

treated as a transaction. Most Transactional Memory systems isolate shared state

weakly to improve performance and this prevents the program from presenting a

consistent view of shared state to external entities. The proposal is that shared

state should be stored in objects that are isolated from local state. The interfaces

to these shared objects should support Memory Transactions. This allows the

program to present a consistent view of shared state to external entities.

Section 2.1.5 discusses the Client Server Database programming model.

In our model Memory Transactions are specified in terms of an Application

Programming Interface (API) to shared memory. Application programs can in-

teract freely with external entities because they execute inevitably, whilst the

shared memory interface executes speculatively. This speculative execution is en-

capsulated within Memory Transactions that present a consistent view of shared

state to the application. This view is passed on to an external entity by the

application.

2.1.3 Atomic Sections

An atomic section is a programming idiom that supports the development of con-

current programs. An atomic section is a section of program code that appears to

be performed atomically and in isolation. An atomic section differs from a critical

section because the instructions within the atomic section can be simultaneously

executed by more than one processor, whereas a critical section guarantees that

only a single processor executes program code within the section at any particular

moment in time.

Speculative lock elision is an execution technique that permits the simulta-

neous speculative execution of program code within a critical section [RG01]. It

permits a concurrent program written using mutual exclusion to be interpreted

as a program containing atomic sections. Within a section all memory writes are

considered speculative and when a conflict occurs the speculative state is rolled

back and corrective action is taken. The rationale behind speculative lock eli-

sion is that conflicts are rare and that execution of the section is unnecessarily

serialised by mutual exclusion.

To detect conflicts it is necessary to distinguish variables that are shared from

2.1. CONCURRENT IO 5

variables that are local to a section. In programming languages that allow the

use of pointers, such as C, the locality of a variable is not explicitly defined by

the program. This limits the utility of atomic sections in general and speculative

lock elision in particular. In programming languages that do not allow the use of

pointers, such as Java, a system can attempt to determine the locality of variables

within a section using techniques such as escape analysis [SR01].

Implementations of atomic sections require the programmer to indicate the

locality of variables to the run-time system in some way. However, the object ori-

ented programming model encourages programmers to place logically connected

variables with different access characteristics together in the same object. The

object oriented model is orthogonal to a model in which the locality of each

variable is considered individually.

The apparent simplicity of the use of the atomic keyword to identify an atomic

section belies the subtle complexities of the use of atomic sections. Atomic sec-

tions do not have intuitive concurrent semantics [CGE08]. They are prone to

isolation pathologies and are not composable [MBL06].

Database systems support transactions without explicitly supporting atomic

sections [WA02]. However, it is informative to consider applying the program-

ming model adopted by Transactional Memory to the programming of a Rela-

tional Database system. SQL is a complete functional programming language

so complex routines can be written as single SQL statements rather like atomic

sections.

Not surprisingly, a database program written in this way has many of the neg-

ative characteristics of a program written for Transactional Memory. SQL does

not have an IO mechanism so interaction with external systems is restricted. SQL

requires that each shared variable must be specified in the database schema so

such a program would be tedious to write. For these reasons Database program-

mers rarely write programs in this style and do not generally express transactions

as atomic sections.

The original proponents of Hardware Transactional Memory envisaged a hard-

ware system that would be able to execute programs written for mutual exclusion

by concurrently executing critical sections as atomic sections. They imagined that

this hardware system could implement transactions transparently and that crit-

ical sections could be converted into atomic sections so that applications would

not have to be changed. Today, few believe that this is achievable. Transactional

6 CONTENTS

Memory systems require that an application program is significantly modified

to support Memory Transactions. Atomic sections seem at odds with modern

networked and object oriented applications. Despite this, the basic approach of

expressing Memory Transactions as atomic sections has remained the same since

Transactional Memory was first proposed.

2.1.4 Previous work

It is common for Transactional Memory systems to treat IO and Operating Sys-

tem interaction as engineering problems to be addressed at a late stage in the

implementation. However, it is difficult to engineer a serial interaction with

external entities into a system primarily designed around the requirements of

concurrent execution. This section describes attempts to engineer support for

external interaction into Transactional Memory systems.

The main reference book on Transactional Memory describes how Trans-

actional Memory systems perform IO and interact with the Operating System

[HLR10]. However, the limited coverage of the topic suggests that the interac-

tion with external systems is not the primary design concern when developing a

Transactional Memory system nor is it the main focus of Transactional Memory

research.

Transactional Memory systems take three general approaches to interaction.

Firstly, they delay interaction by buffering the output produced within an atomic

section. The buffer can be discarded if the atomic section is restarted. Secondly,

they undo interaction with the Operating System. A memory allocation within

an atomic section can be undone should the atomic section be restarted. Thirdly,

they stop concurrent execution before interacting with an external entity.

xCall is a Transactional Memory aware API that has been proposed for han-

dling system calls [VTG+09]. xCall addresses the problem of performing IO while

executing speculatively. It also addresses the problem that the atomicity and iso-

lation guarantees made by the transactional system do not apply to the Operating

System kernel.

xCall provides output facilities to Memory Transactions by buffering IO oper-

ations until a transaction has committed. This buffered output can be discarded

if speculation fails. The technique makes writing monolithic programs easier as

output can be built up as the program runs.

xCall improves the concurrent semantics of some system calls by undoing their

2.1. CONCURRENT IO 7

effect when the transaction is aborted. This technique works well for memory

allocation but not all Operating System calls are reversible.

Applications in the STAMP benchmark suite stop all concurrent execution

before initiating output [CMCKO08]. Software Transactional Memory systems

generally approach Operating System interaction in the same way as output.

They stop all concurrent execution before making a call to the Operating System.

Operating System interaction complicates the implementation of Hardware

Transactional Memory systems and a great deal of engineering effort is required

to support it. Many Operating System calls involve a context switch. The state of

the transaction prior to the context switch must be preserved and this state must

be restored after the Operating System call is complete [KHLW10]. For Hardware

Transactional Memory systems that buffer speculative state in cache the context

switch associated with Operating System calls is particularly problematic. The

Hardware Transactional Memory system must ensure that speculative state held

in cache is not flushed during the Operating System call.

In-memory databases implement the database programming model [Gra02].

In-memory database systems execute programs inevitably and present a consis-

tent view of shared state to external entities. However, many of the features

of in-memory databases, such as abstract query language and relational tables

are not suitable as a model of shared state for concurrent programming. A con-

current programming solution should adopt only those features of the database

model that are relevant to supporting the interaction with external entities.

2.1.5 The Client Server Database Model

The Client Server Database model addresses a similar problem to Transactional

Memory and it shares the goals of supporting scalable concurrent execution and

ease of programming. The reason why the programming styles and supporting

systems appear so different is that database programs treat the interaction with

external entities as the primary design concern and this affects every aspect of

the program and supporting system.

The Client Server Database model is a software engineering concept in which

the application processing and the management of shared data are regarded as

distinct processing tiers. These tiers do not share access to each other’s data and

the interaction between the tiers is restricted to passing messages between them.

The Client Server Database model provides the appearance of serial execution

8 CONTENTS

to entities outside the control of the system. This is achieved by isolating and

serialising the interaction with any particular external entity through a client

server relationship. The processing of the interaction with each client is treated

as an independent task. These tasks can be executed concurrently while each

client experiences a serial interaction with the program.

In the Client Server Database model applications execute inevitably with spec-

ulative execution restricted to the accesses to shared data. The execution of a

program can be regarded as serial because it is isolated from concurrently exe-

cuting programs and because the access to shared data is serialised. In the Client

Server Database programming model, output is only contingent on committed

state so all speculative execution related to the output values must be committed

before output can start.

The Client Server Database model describes how shared state should be re-

stricted so that external entities experience a consistent view of shared state. This

is achieved by giving the appearance of a serialised interaction with shared state

to any particular external entity by using a database as the exclusive repository

of shared state.

A Client Server Database system treats state local to an application and

state shared between applications completely differently. State shared between

processes is restricted exclusively to values in the database, which can only be

accessed through the interface provided by the database, whereas state local to

an application can be accessed by the usual memory operations.

In the Client Server Database model all state shared between users is restricted

exclusively to the database. Data related to one client is isolated from data

related to any other client. Output must be based on committed shared state.

Typically, a database server will implement some kind of memory protection or

address space restriction to prevent instances of concurrently executing programs

affecting each other’s execution.

2.1.6 Heterogeneous Processors

Message passing is the predominant model for programming heterogeneous Chip

Multi-Processors. The message passing model restricts shared state to the inter-

nals of the message passing interface. The program must pass all shared values

in messages. When message passing is orchestrated, as it is in a parallel proces-

sor, it can be a very efficient way of sharing data, but when messages must be

2.1. CONCURRENT IO 9

marshalled, as they are in an embedded Chip Multi-Processor, the overheads of

routing messages can be very high.

A communications protocol is used to pass messages between processors. A

programmer must be careful to abide by the rules of this protocol and handle all

conditions relating to the transmission of the message. It is possible to implement

layers of abstraction over message passing protocols but the fundamental interac-

tion with the program cannot be abstracted away [Zim81]. The usual approach

to programming heterogeneous systems is to avoid sharing any state at all by

using a programming language such as Erlang [Arm07]. There is almost univer-

sal agreement that concurrent programs for heterogeneous Chip Multi-Processors

are difficult to write [DL09].

The reason why Transactional Memory has not been proposed as a technique

for making the programming of heterogeneous Chip Multi-Processors easier is

that heterogeneous processors do not have mechanisms for ensuring the consis-

tency of shared memory. Heterogeneous Chip Multi-Processors do not implement

mechanisms, such as cache coherency, which would allow them to share state.

The solution to the problems of allowing heterogeneous systems concurrent

access to shared data are solved by Client Server Databases which are naturally

heterogeneous. The mechanisms used to maintain shared state in a database

environment could serve as a model for heterogeneous Chip Multi-Processors.

Bibliography

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concurrent

World. Pragmatic Bookshelf, 2007.

[CGE08] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep

off the grass: Locking the right path for atomicity. In CC ’08:

Proc. International Conference on Compiler Construction, pages

276–290, March 2008.

[CMCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle

Olukotun. STAMP: Stanford transactional applications for multi-

processing. In IISWC ’08: Proceedings of The IEEE International

Symposium on Workload Characterization, September 2008.

[DL09] Jack Dongarra and Alexey L. Lastovetsky. High Performance Het-

erogeneous Computing. Wiley-Interscience, New York, NY, USA,

2009.

[Gra02] Steve Graves. In-memory database systems. Linux J., 2002:10–,

September 2002.

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-

ory, 2nd edition. Synthesis Lectures on Computer Architecture.

Morgan & Claypool Publishers, 2010.

[KHLW10] Behram Khan, Matthew Horsnell, Mikel Lujan, and Ian Watson.

Scalable object-aware hardware transactional memory. In Proceed-

ings of the 16th international Euro-Par conference on Parallel pro-

cessing: Part I, EuroPar’10, pages 268–279, Berlin, Heidelberg,

2010. Springer-Verlag.

10

BIBLIOGRAPHY 11

[MBL06] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transac-

tional memory atomicity semantics. IEEE Comput. Archit. Lett.,

5:17–, July 2006.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: en-

abling highly concurrent multithreaded execution. In Proceedings of

the 34th annual ACM/IEEE international symposium on Microar-

chitecture, MICRO 34, pages 294–305, Washington, DC, USA, 2001.

IEEE Computer Society.

[SR01] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis

for multithreaded programs. SIGPLAN Not., 36:12–23, June 2001.

[VTG+09] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift,

and Adam Welc. xCalls: safe I/O in memory transactions. In

EuroSys, pages 247–260, 2009.

[WA02] Michael Widenius and Davis Axmark. MySQL Reference Manual.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1st edition, 2002.

[Zim81] Hubert Zimmermann. The ISO reference model for open systems

interconnection. In Kommunikation in Verteilten Systemen, pages

39–57, 1981.

	Concurrent IO
	The interaction with external entities
	The Database Programming Model
	Atomic Sections
	Previous work
	The Client Server Database Model
	Heterogeneous Processors

	Bibliography

