Contents

4.1 Linearizable objects o L 2
4.1.1 Weak Isolation 2

4.1.2 Strong Isolation 3

4.1.3 Linearizability oo 4

4.1.4 Previouswork 5)

4.1.5 The semantics of weak isolation 5

4.1.6 Isolation pathologies 6

4.1.7 Nested Transactions 7
Bibliography 10

2 CONTENTS

4.1 Linearizable objects

Concurrent programming using mutual exclusion is considered to be difficult but
developing software using Memory Transactions is not necessarily easier. Trans-
actional Memory systems have complex concurrent semantics and are prone to
isolation pathologies, such as cascading aborts, which make their run-time be-
haviour unpredictable. Weak isolation can be identified as the cause of these
problems. To avoid these problems Memory Transactions should be strongly
isolated and shared state should be encapsulated in linearizable objects. Lin-
earizable objects have intuitive concurrent semantics and are free from isolation
pathologies.

Transactional Memory systems weaken transactional isolation for several rea-
sons. Firstly, to make programming easier by minimising the application changes
required when implementing atomic sections. Secondly, to improve concurrent
performance, by allowing transactions to share values. Thirdly, to allow transac-
tions to be composed by nesting.

The main contribution of this section is the identification of weak transactional
isolation as one of the reasons why concurrent programs are so difficult to write.

This section focuses on implementing strongly isolated Memory Transactions.

4.1.1 Weak Isolation

Weakly isolated transactions appear to make programming more convenient by
allowing active transactions to pass values to each other. However, weakly iso-
lated transactions interact with each other in many different ways which makes
their concurrent semantics very complex. Programming a system with complex
semantics is much more difficult than programming a system with simple intuitive
semantics. In a large program the complex semantics of weak isolation overwhelm
the programming convenience of value passing.

Section 4.1.5 identifies weak isolation as the origin of the semantic complexity
of transactional systems.

Weak isolation appears to improve the performance of a transactional system
by allowing a value to be shared between transactions as soon as it is produced,
but this introduces isolation pathologies which make the behaviour of the concur-
rent system unpredictable. As the number of participating processors increases so

does the overhead of the mechanisms required to avoid pathologies. Eventually,

4.1. LINEARIZABLE OBJECTS 3

this overhead exceeds the benefits of sharing values.

Section 4.1.6 describes how weak isolation causes the isolation pathologies.

A programming system should permit the programmer to compose a complex
application from simple components and the act of composition should not add
complexity. Transactional Memory systems support nesting so that transactions
can be composed. Nested transactions have complex concurrent semantics be-
cause they are a form of weak isolation in which value sharing is restricted to the
parent-child relationship. To compose complex transactional applications from
simpler components it is not necessary to support nested transactions. Commer-
cial database applications can be very complex, yet nested transactions are rarely
used.

Section 4.1.7 describes the semantics of nested transactions.

A solution to the problem of weak isolation and its associated pathologies
must address the reasons why isolation is typically weakened. Weak isolation per-
mits state to be shared between processors efficiently, minimises the application
changes required to support Memory Transactions and facilitates transactional

composition.

4.1.2 Strong Isolation

The requirements that motivate the use of weak isolation should be satisfied by
the interface to shared state. Memory Transactions should be strongly isolated
and shared state should be encapsulated in linearizable objects.

Linearizability is a correctness condition that characterises the concurrent
behaviour of an object. Informally, an object is said to be linearizable if all of its
fields are private and the execution of each of its methods appear to take place
atomically, at a single moment in time, between their invocation and response
[Her08].

Section 4.1.3 describes the property of linearizability in detail.

A mutating method of an object can be seen as a transformation from a set
of pre-conditions, that are true of the object before the method call, to a set of
post-conditions, that are true afterwards. When these conditions are met the
object is said to be consistent. A linearizable object can ensure the consistency
of the data that it encapsulates.

A method of a linearizable object can be regarded as a Memory Transaction

because it is atomic, isolated and can ensure consistency. The execution of a

4 CONTENTS

method of a linearizable object forms a strongly isolated Memory Transaction
which is free from isolation pathologies and has intuitive concurrent semantics.

A linearizable object satisfies our requirement for a solution to the problems
caused by weak isolation because it allows state to be shared between processors
efficiently, minimises changes to the calling application and allows transactions
to be composed.

In a concurrent system, shared state should be represented to applications ex-
clusively as linearizable objects because they have intuitive concurrent semantics

and predictable run-time behaviour.

4.1.3 Linearizability

Linearizability can be viewed as a special case of serialisability in which a trans-
action is restricted to a single method applied to a single object.

Linearizability is a non-blocking property of objects. An invocation of a
method is never required to wait for another pending invocation to complete
so the methods of linearizable objects are not prone to the progress pathology of
dead-lock.

Linearizability is a local property. The methods of an object can enforce
linearizability without reference to any other object or to any global state so it
is not necessary to invoke the concept of a global transaction manager to enforce
linearizability.

The Linearizability property of an object may be preserved when objects are
composed. A system composed of objects is linearizable if and only if every object
in the system is linearizable.

The property of linearizability does not permit method calls whose execu-
tion does not overlap to be re-ordered so it enforces a sequential order of events
affecting an object and preserves the real time order of method calls.

The property of linearizability can be contrasted with that of sequential con-
sistency which, when applied to objects, requires that method calls issued by
different processors appear to take place in some global sequential order. Se-
quential consistency is a property of the method calls of objects in a concurrent
system that many programmers expect [Lam97].

Sequential consistency is not a local property so a global view of state is re-
quired to ensure sequential consistency. It is a blocking property so an invocation

of a method is required to wait for another pending invocation to complete. It

4.1. LINEARIZABLE OBJECTS 5

is not a composable property so a system composed of multiple sequentially con-
sistent objects is not necessarily sequentially consistent. Sequential consistency
permits method calls whose execution does not overlap to be re-ordered so it does
not preserve the real time order of method calls.

Linearizability is a stronger condition than sequential consistency. Every lin-

earizable history is sequentially consistent but not vice versa.

4.1.4 Previous work

Herlihy introduced linearizability as a correctness condition [HW90]. Herlihy also
provides an accessible introduction to linearizability [Her08]. Linearizability has
not previously been considered as a correctness condition for Immutable Data

Structures.

4.1.5 The semantics of weak isolation

Isolation levels are a way of describing the behaviour of weakly isolated transac-
tions in terms of the access that a transaction has to the uncommitted state of
another transaction. In Database systems the classification of isolation levels is
formalised as the ANSI/ISO Isolation Levels [ISO92]. This formalism describes
weak isolation by characterising a read access that would not be permitted in a
strongly isolated transactional system.

A dirty read is an access to the uncommitted state of another transaction.
The transaction from which the variable was read might never commit. A trans-
actional system that permits dirty reads is regarded as having a transaction iso-
lation level of read uncommitted. 1t is difficult to write a concurrent program for
a system that permits dirty reads as there can be no happens-before relationship
between transactions.

A non-repeatable read is an access to a shared variable that can be modified
by another transaction. A variable can appear to have a different value when read
for a second time within a single transaction. A transactional system that permits
non-repeatable reads is regarded as having an isolation level of read committed. 1t
is difficult to write a concurrent program in a system that permits non-repeatable
reads as the value of variables can appear to change for reasons outside the
immediate logic of the program.

A phantom read is an inconsistent access to shared state. A transactional

6 CONTENTS

system that permits phantom reads is regarded as having an isolation level of
repeatable read. This isolation level is referred to as repeatable because a read
access to a single variable will always return the same value within a transac-
tion. However, the reading of multiple variables within a transaction may not,
necessarily, present a consistent view of shared state. It is difficult to write a
concurrent program in a system that permits phantom reads as the value of the
variables accessed by a transaction do not necessarily represent a consistent state.

The ANSI/ISO Isolation Levels formalism has been criticised as being vague,
incomplete, inconsistent and not corresponding to the levels implemented by com-
mercial systems [BBG195]. These criticisms support our assertion that weak iso-
lation does not have intuitive concurrent semantics. If the ANSI committee could
not come up with a logical way of classifying the semantics of weak isolation then
there is little chance that ordinary programmers will be able to reason about
them.

Transactional Memory systems compromise the strict isolation of transactions
to make a program easier to write. However, weakly isolated concurrent systems
have complex semantics that can make a concurrent program more difficult to

write.

4.1.6 Isolation pathologies

Isolation pathologies arise when scheduling is applied to enforce reasonable be-
haviour on weakly isolated transactions.

A transaction schedule in which a transaction may commit before a trans-
action that wrote a variable that it has read is called non-recoverable. The
transaction schedule is non-recoverable because if the transaction it read from
aborts then it too should abort, because the value it read should never have been
written. However, once the transaction has already committed it is not possi-
ble to abort. A transaction schedule in which a transaction can commit only
after all the transactions it has read from have committed is called recoverable.
Non-recoverability is an isolation pathology of transactional systems that leads
to inconsistent results.

A transaction schedule in which a transaction is permitted to read uncommit-
ted values can suffer from the pathology of cascading aborts. A cascading abort
occurs when a transaction reads a value, written by another transaction, that has

not yet committed. If the transaction from which the value was read is aborted

4.1. LINEARIZABLE OBJECTS 7

then the reading transaction must also abort. A transaction schedule in which
a transaction can only read committed values avoids the pathology of cascading
aborts. Cascading aborts are an isolation pathology that causes unpredictable
run-time behaviour.

A transaction schedule in which all transactions appear to execute in isolation
is said to be serialisable. The execution is called serialisable because it is equiva-
lent to an execution in which all transactions execute one after the other. A serial
transaction schedule in which the order of conflicting operations matches the or-
der in which the transactions commit is said to be strict. Strictly serialisable
schedules are recoverable and not prone to the pathology of cascading aborts.

Transactional Memory systems compromise the strict isolation of transac-
tions to obtain concurrent speed-up. However, weak isolation leaves Transac-
tional Memory systems prone to isolation pathologies that make their run-time

performance unpredictable.

4.1.7 Nested Transactions

Nesting permits the composition of complex programs from simpler components.
Transactional nesting is a form of weak isolation in which values may be shared
between transactions if there is a parent-child relationship between them. Trans-
actional nesting has complex semantics and guaranteeing the correctness of exe-
cution has high overheads.

A nested transaction is a transaction whose execution is properly contained
within the dynamic extent of another transaction. However, transactional nesting
is generally taken to mean the nesting of atomic sections so that an outer section
shares speculative state with an atomic section contained within it.

Mutual exclusion is not a composable property and this is often cited as an
argument to motivate the use of Transactional Memory [HMPJHO05]. Tt is argued
that in order for Memory Transactions to be composable a Transactional Memory
system should support nesting.

To support nested transactions isolation must be weakened to permit a parent-
child relationship between transactions. A parent transaction passes information
to its child both explicitly, in the form of shared values, and implicitly, because
the parent must exist in order for the child to be created.

Closed nesting has the simplest semantics but its implementation is complex.

A parent transaction may start a child transaction but the child must commit

8 CONTENTS

before its parent can commit. The speculative state of the child is incorporated
into the speculative state of its parent when it commits. If a child transaction
aborts it can be restarted, without forcing the parent to abort. Closed nested
transactions facilitate the composition of a complex transaction from simpler
components and reduce wasted work. Maintaining the parent-child relationship
between closed transactions has a high overhead because if the parent transaction
is aborted then its children must also be aborted. However, the child transaction
may have already committed so to ensure that the transaction schedule of a
closed nested transaction is recoverable, all of the state produced by the child

transaction must be contained within the parent.

Open nested transactions have complex semantics but the implementation can
be simpler than that of closed nesting. When an open nested transaction commits,
its changes become visible to all other transactions in the system. Concurrently
executing transactions observe changes to shared state immediately [NMAT07].
It is not necessary to maintain multiple versions of shared state so implementation
is simplified. Open nested transactions are composable, although great care must
be taken to avoid pathologies because exposing changes of shared state leads to
the phenomenon of non-repeatable reads and the isolation pathology of cascading

aborts.

There is a precise definition of the semantics of both open and closed nested
transactions [MHO06]. However, other forms of nesting, of which there are many,

do not have precise definitions.

Flattened nesting has complex semantics but simple implementation. Flatten-
ing is similar to closed nesting except that if a child transaction aborts the parent
transaction must also abort. Flattened transactions are effectively nested sub-
routines, all that is required to implement them is a stack of pointers indicating
the calling point in the parent, so implementation is straightforward. Flattened

nested transactions are not composable so their utility is questionable [HLR10].

Many database systems support some form of nested transactions. However,
the use of nested transactions in the database programming environment is not
widespread [GR93|. Nested database transactions can reduce the overhead of
transactional execution. Nesting facilitates the check pointing of transactions to
reduce the amount of work wasted when a transaction aborts [HKO08]. Nesting
also permits short running transactions to abort without affecting their long run-

ning parents. However, the overhead of maintaining the parent-child relationship

4.1. LINEARIZABLE OBJECTS 9

between transactions is significant. In the database environment the overheads
of transaction management, relative to the work done by a transaction access-
ing disk, are very low. Even so, support for nested database transactions has a
significant performance overhead [GR93].

There is wide disagreement on the semantics of transactional nesting and on
the desirability of different forms of nesting [AFS08] [HLR10]. However, the de-
bate about nesting is really a debate about weakening transactional isolation.
The complexity of the issues surrounding transactional nesting obfuscates the
undesirability of weak isolation. Nested transactions, like other forms of weak
isolation, have complex semantics and their run-time execution is prone to isola-
tion pathologies.

Transactional Memory systems permit composition through nesting which
makes a program easier to write. However, nesting is a form of weak isolation with

complex semantics that makes a concurrent program more difficult to write.

Bibliography

[AFS08]

[BBG*95]

[GR93]

[Her08]

[HKO08]

[HLR10]

[HMPJHO5]

Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested par-
allelism in transactional memory. In PPoPP ’'08: Proceedings of
the 153th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 163174, New York, NY, USA, 2008.
ACM.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A critique of ANSI SQL isolation levels.
SIGMOD Rec., 24:1-10, May 1995.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1993.

Maurice Herlihy. Linearizability. In Encyclopedia of Algorithms.
Springer, 2008.

Maurice Herlihy and Eric Koskinen. Checkpoints and continuations
instead of nested transactions. In TRANSACT ’08: 3rd Workshop
on Transactional Computing, February 2008.

Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-
ory, 2nd edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2010.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. Composable memory transactions. In PPoPP °05: Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 48-60, New York, NY, USA, 2005.
ACM.

10

BIBLIOGRAPHY 11

[HW90]

1S092]

[Lam97]

[MHO6]

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463-492, 1990.

ISO. SQL Specification. ISO, 1992.

Leslie Lamport. How to make a correct multiprocess program
execute correctly on a multiprocessor. IEEE Trans. Comput.,
46(7):779-782, 1997.

J. Eliot B. Moss and Antony L. Hosking. Nested transactional
memory: model and architecture sketches. Sci. Comput. Program.,

63(2):186-201, 2006.

INMAT*07] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosk-

ing, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana
Shpeisman. Open nesting in software transactional memory. In
PPoPP ’07: Proc. 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 6878, mar 2007.

	Linearizable objects
	Weak Isolation
	Strong Isolation
	Linearizability
	Previous work
	The semantics of weak isolation
	Isolation pathologies
	Nested Transactions

	Bibliography

