
Contents

4.1 Linearizable objects . 2

4.1.1 Weak Isolation . 2

4.1.2 Strong Isolation . 3

4.1.3 Linearizability . 4

4.1.4 Previous work . 5

4.1.5 The semantics of weak isolation 5

4.1.6 Isolation pathologies . 6

4.1.7 Nested Transactions . 7

Bibliography 10

1

2 CONTENTS

4.1 Linearizable objects

Concurrent programming using mutual exclusion is considered to be difficult but

developing software using Memory Transactions is not necessarily easier. Trans-

actional Memory systems have complex concurrent semantics and are prone to

isolation pathologies, such as cascading aborts, which make their run-time be-

haviour unpredictable. Weak isolation can be identified as the cause of these

problems. To avoid these problems Memory Transactions should be strongly

isolated and shared state should be encapsulated in linearizable objects. Lin-

earizable objects have intuitive concurrent semantics and are free from isolation

pathologies.

Transactional Memory systems weaken transactional isolation for several rea-

sons. Firstly, to make programming easier by minimising the application changes

required when implementing atomic sections. Secondly, to improve concurrent

performance, by allowing transactions to share values. Thirdly, to allow transac-

tions to be composed by nesting.

The main contribution of this section is the identification of weak transactional

isolation as one of the reasons why concurrent programs are so difficult to write.

This section focuses on implementing strongly isolated Memory Transactions.

4.1.1 Weak Isolation

Weakly isolated transactions appear to make programming more convenient by

allowing active transactions to pass values to each other. However, weakly iso-

lated transactions interact with each other in many different ways which makes

their concurrent semantics very complex. Programming a system with complex

semantics is much more difficult than programming a system with simple intuitive

semantics. In a large program the complex semantics of weak isolation overwhelm

the programming convenience of value passing.

Section 4.1.5 identifies weak isolation as the origin of the semantic complexity

of transactional systems.

Weak isolation appears to improve the performance of a transactional system

by allowing a value to be shared between transactions as soon as it is produced,

but this introduces isolation pathologies which make the behaviour of the concur-

rent system unpredictable. As the number of participating processors increases so

does the overhead of the mechanisms required to avoid pathologies. Eventually,

4.1. LINEARIZABLE OBJECTS 3

this overhead exceeds the benefits of sharing values.

Section 4.1.6 describes how weak isolation causes the isolation pathologies.

A programming system should permit the programmer to compose a complex

application from simple components and the act of composition should not add

complexity. Transactional Memory systems support nesting so that transactions

can be composed. Nested transactions have complex concurrent semantics be-

cause they are a form of weak isolation in which value sharing is restricted to the

parent-child relationship. To compose complex transactional applications from

simpler components it is not necessary to support nested transactions. Commer-

cial database applications can be very complex, yet nested transactions are rarely

used.

Section 4.1.7 describes the semantics of nested transactions.

A solution to the problem of weak isolation and its associated pathologies

must address the reasons why isolation is typically weakened. Weak isolation per-

mits state to be shared between processors efficiently, minimises the application

changes required to support Memory Transactions and facilitates transactional

composition.

4.1.2 Strong Isolation

The requirements that motivate the use of weak isolation should be satisfied by

the interface to shared state. Memory Transactions should be strongly isolated

and shared state should be encapsulated in linearizable objects.

Linearizability is a correctness condition that characterises the concurrent

behaviour of an object. Informally, an object is said to be linearizable if all of its

fields are private and the execution of each of its methods appear to take place

atomically, at a single moment in time, between their invocation and response

[Her08].

Section 4.1.3 describes the property of linearizability in detail.

A mutating method of an object can be seen as a transformation from a set

of pre-conditions, that are true of the object before the method call, to a set of

post-conditions, that are true afterwards. When these conditions are met the

object is said to be consistent. A linearizable object can ensure the consistency

of the data that it encapsulates.

A method of a linearizable object can be regarded as a Memory Transaction

because it is atomic, isolated and can ensure consistency. The execution of a

4 CONTENTS

method of a linearizable object forms a strongly isolated Memory Transaction

which is free from isolation pathologies and has intuitive concurrent semantics.

A linearizable object satisfies our requirement for a solution to the problems

caused by weak isolation because it allows state to be shared between processors

efficiently, minimises changes to the calling application and allows transactions

to be composed.

In a concurrent system, shared state should be represented to applications ex-

clusively as linearizable objects because they have intuitive concurrent semantics

and predictable run-time behaviour.

4.1.3 Linearizability

Linearizability can be viewed as a special case of serialisability in which a trans-

action is restricted to a single method applied to a single object.

Linearizability is a non-blocking property of objects. An invocation of a

method is never required to wait for another pending invocation to complete

so the methods of linearizable objects are not prone to the progress pathology of

dead-lock.

Linearizability is a local property. The methods of an object can enforce

linearizability without reference to any other object or to any global state so it

is not necessary to invoke the concept of a global transaction manager to enforce

linearizability.

The Linearizability property of an object may be preserved when objects are

composed. A system composed of objects is linearizable if and only if every object

in the system is linearizable.

The property of linearizability does not permit method calls whose execu-

tion does not overlap to be re-ordered so it enforces a sequential order of events

affecting an object and preserves the real time order of method calls.

The property of linearizability can be contrasted with that of sequential con-

sistency which, when applied to objects, requires that method calls issued by

different processors appear to take place in some global sequential order. Se-

quential consistency is a property of the method calls of objects in a concurrent

system that many programmers expect [Lam97].

Sequential consistency is not a local property so a global view of state is re-

quired to ensure sequential consistency. It is a blocking property so an invocation

of a method is required to wait for another pending invocation to complete. It

4.1. LINEARIZABLE OBJECTS 5

is not a composable property so a system composed of multiple sequentially con-

sistent objects is not necessarily sequentially consistent. Sequential consistency

permits method calls whose execution does not overlap to be re-ordered so it does

not preserve the real time order of method calls.

Linearizability is a stronger condition than sequential consistency. Every lin-

earizable history is sequentially consistent but not vice versa.

4.1.4 Previous work

Herlihy introduced linearizability as a correctness condition [HW90]. Herlihy also

provides an accessible introduction to linearizability [Her08]. Linearizability has

not previously been considered as a correctness condition for Immutable Data

Structures.

4.1.5 The semantics of weak isolation

Isolation levels are a way of describing the behaviour of weakly isolated transac-

tions in terms of the access that a transaction has to the uncommitted state of

another transaction. In Database systems the classification of isolation levels is

formalised as the ANSI/ISO Isolation Levels [ISO92]. This formalism describes

weak isolation by characterising a read access that would not be permitted in a

strongly isolated transactional system.

A dirty read is an access to the uncommitted state of another transaction.

The transaction from which the variable was read might never commit. A trans-

actional system that permits dirty reads is regarded as having a transaction iso-

lation level of read uncommitted. It is difficult to write a concurrent program for

a system that permits dirty reads as there can be no happens-before relationship

between transactions.

A non-repeatable read is an access to a shared variable that can be modified

by another transaction. A variable can appear to have a different value when read

for a second time within a single transaction. A transactional system that permits

non-repeatable reads is regarded as having an isolation level of read committed. It

is difficult to write a concurrent program in a system that permits non-repeatable

reads as the value of variables can appear to change for reasons outside the

immediate logic of the program.

A phantom read is an inconsistent access to shared state. A transactional

6 CONTENTS

system that permits phantom reads is regarded as having an isolation level of

repeatable read. This isolation level is referred to as repeatable because a read

access to a single variable will always return the same value within a transac-

tion. However, the reading of multiple variables within a transaction may not,

necessarily, present a consistent view of shared state. It is difficult to write a

concurrent program in a system that permits phantom reads as the value of the

variables accessed by a transaction do not necessarily represent a consistent state.

The ANSI/ISO Isolation Levels formalism has been criticised as being vague,

incomplete, inconsistent and not corresponding to the levels implemented by com-

mercial systems [BBG+95]. These criticisms support our assertion that weak iso-

lation does not have intuitive concurrent semantics. If the ANSI committee could

not come up with a logical way of classifying the semantics of weak isolation then

there is little chance that ordinary programmers will be able to reason about

them.

Transactional Memory systems compromise the strict isolation of transactions

to make a program easier to write. However, weakly isolated concurrent systems

have complex semantics that can make a concurrent program more difficult to

write.

4.1.6 Isolation pathologies

Isolation pathologies arise when scheduling is applied to enforce reasonable be-

haviour on weakly isolated transactions.

A transaction schedule in which a transaction may commit before a trans-

action that wrote a variable that it has read is called non-recoverable. The

transaction schedule is non-recoverable because if the transaction it read from

aborts then it too should abort, because the value it read should never have been

written. However, once the transaction has already committed it is not possi-

ble to abort. A transaction schedule in which a transaction can commit only

after all the transactions it has read from have committed is called recoverable.

Non-recoverability is an isolation pathology of transactional systems that leads

to inconsistent results.

A transaction schedule in which a transaction is permitted to read uncommit-

ted values can suffer from the pathology of cascading aborts. A cascading abort

occurs when a transaction reads a value, written by another transaction, that has

not yet committed. If the transaction from which the value was read is aborted

4.1. LINEARIZABLE OBJECTS 7

then the reading transaction must also abort. A transaction schedule in which

a transaction can only read committed values avoids the pathology of cascading

aborts. Cascading aborts are an isolation pathology that causes unpredictable

run-time behaviour.

A transaction schedule in which all transactions appear to execute in isolation

is said to be serialisable. The execution is called serialisable because it is equiva-

lent to an execution in which all transactions execute one after the other. A serial

transaction schedule in which the order of conflicting operations matches the or-

der in which the transactions commit is said to be strict. Strictly serialisable

schedules are recoverable and not prone to the pathology of cascading aborts.

Transactional Memory systems compromise the strict isolation of transac-

tions to obtain concurrent speed-up. However, weak isolation leaves Transac-

tional Memory systems prone to isolation pathologies that make their run-time

performance unpredictable.

4.1.7 Nested Transactions

Nesting permits the composition of complex programs from simpler components.

Transactional nesting is a form of weak isolation in which values may be shared

between transactions if there is a parent-child relationship between them. Trans-

actional nesting has complex semantics and guaranteeing the correctness of exe-

cution has high overheads.

A nested transaction is a transaction whose execution is properly contained

within the dynamic extent of another transaction. However, transactional nesting

is generally taken to mean the nesting of atomic sections so that an outer section

shares speculative state with an atomic section contained within it.

Mutual exclusion is not a composable property and this is often cited as an

argument to motivate the use of Transactional Memory [HMPJH05]. It is argued

that in order for Memory Transactions to be composable a Transactional Memory

system should support nesting.

To support nested transactions isolation must be weakened to permit a parent-

child relationship between transactions. A parent transaction passes information

to its child both explicitly, in the form of shared values, and implicitly, because

the parent must exist in order for the child to be created.

Closed nesting has the simplest semantics but its implementation is complex.

A parent transaction may start a child transaction but the child must commit

8 CONTENTS

before its parent can commit. The speculative state of the child is incorporated

into the speculative state of its parent when it commits. If a child transaction

aborts it can be restarted, without forcing the parent to abort. Closed nested

transactions facilitate the composition of a complex transaction from simpler

components and reduce wasted work. Maintaining the parent-child relationship

between closed transactions has a high overhead because if the parent transaction

is aborted then its children must also be aborted. However, the child transaction

may have already committed so to ensure that the transaction schedule of a

closed nested transaction is recoverable, all of the state produced by the child

transaction must be contained within the parent.

Open nested transactions have complex semantics but the implementation can

be simpler than that of closed nesting. When an open nested transaction commits,

its changes become visible to all other transactions in the system. Concurrently

executing transactions observe changes to shared state immediately [NMAT+07].

It is not necessary to maintain multiple versions of shared state so implementation

is simplified. Open nested transactions are composable, although great care must

be taken to avoid pathologies because exposing changes of shared state leads to

the phenomenon of non-repeatable reads and the isolation pathology of cascading

aborts.

There is a precise definition of the semantics of both open and closed nested

transactions [MH06]. However, other forms of nesting, of which there are many,

do not have precise definitions.

Flattened nesting has complex semantics but simple implementation. Flatten-

ing is similar to closed nesting except that if a child transaction aborts the parent

transaction must also abort. Flattened transactions are effectively nested sub-

routines, all that is required to implement them is a stack of pointers indicating

the calling point in the parent, so implementation is straightforward. Flattened

nested transactions are not composable so their utility is questionable [HLR10].

Many database systems support some form of nested transactions. However,

the use of nested transactions in the database programming environment is not

widespread [GR93]. Nested database transactions can reduce the overhead of

transactional execution. Nesting facilitates the check pointing of transactions to

reduce the amount of work wasted when a transaction aborts [HK08]. Nesting

also permits short running transactions to abort without affecting their long run-

ning parents. However, the overhead of maintaining the parent-child relationship

4.1. LINEARIZABLE OBJECTS 9

between transactions is significant. In the database environment the overheads

of transaction management, relative to the work done by a transaction access-

ing disk, are very low. Even so, support for nested database transactions has a

significant performance overhead [GR93].

There is wide disagreement on the semantics of transactional nesting and on

the desirability of different forms of nesting [AFS08] [HLR10]. However, the de-

bate about nesting is really a debate about weakening transactional isolation.

The complexity of the issues surrounding transactional nesting obfuscates the

undesirability of weak isolation. Nested transactions, like other forms of weak

isolation, have complex semantics and their run-time execution is prone to isola-

tion pathologies.

Transactional Memory systems permit composition through nesting which

makes a program easier to write. However, nesting is a form of weak isolation with

complex semantics that makes a concurrent program more difficult to write.

Bibliography

[AFS08] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested par-

allelism in transactional memory. In PPoPP ’08: Proceedings of

the 13th ACM SIGPLAN Symposium on Principles and practice of

parallel programming, pages 163–174, New York, NY, USA, 2008.

ACM.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth

O’Neil, and Patrick O’Neil. A critique of ANSI SQL isolation levels.

SIGMOD Rec., 24:1–10, May 1995.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1993.

[Her08] Maurice Herlihy. Linearizability. In Encyclopedia of Algorithms.

Springer, 2008.

[HK08] Maurice Herlihy and Eric Koskinen. Checkpoints and continuations

instead of nested transactions. In TRANSACT ’08: 3rd Workshop

on Transactional Computing, February 2008.

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-

ory, 2nd edition. Synthesis Lectures on Computer Architecture.

Morgan & Claypool Publishers, 2010.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-

lihy. Composable memory transactions. In PPoPP ’05: Proceedings

of the tenth ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 48–60, New York, NY, USA, 2005.

ACM.

10

BIBLIOGRAPHY 11

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a cor-

rectness condition for concurrent objects. ACM Trans. Program.

Lang. Syst., 12(3):463–492, 1990.

[ISO92] ISO. SQL Specification. ISO, 1992.

[Lam97] Leslie Lamport. How to make a correct multiprocess program

execute correctly on a multiprocessor. IEEE Trans. Comput.,

46(7):779–782, 1997.

[MH06] J. Eliot B. Moss and Antony L. Hosking. Nested transactional

memory: model and architecture sketches. Sci. Comput. Program.,

63(2):186–201, 2006.

[NMAT+07] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosk-

ing, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana

Shpeisman. Open nesting in software transactional memory. In

PPoPP ’07: Proc. 12th ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 68–78, mar 2007.

	Linearizable objects
	Weak Isolation
	Strong Isolation
	Linearizability
	Previous work
	The semantics of weak isolation
	Isolation pathologies
	Nested Transactions

	Bibliography

