
Contents

3.5 Abstract Data Types for Immutable Data 2

3.5.1 Priority Queue . 2

3.5.2 Directed min-tree . 7

3.5.3 Deque . 10

3.5.4 Directed deque . 11

3.5.5 Map . 15

3.5.6 Interval tree with sentinel 19

3.5.7 Vector . 20

3.5.8 Directed sequence . 24

3.5.9 Previous work . 26

Bibliography 27

1

2 CONTENTS

3.5 Abstract Data Types for Immutable Data

The design of a data structure is normally tightly coupled with the ADT being

implemented. The property of immutability permits the development of a gen-

eral technique for implementing an ADT. The technique has not previously been

explored in the context of an imperative programming language. The Canon-

ical Binary Tree can be made to conform to many different ADTs by specify-

ing a specialising function as a first order parameter. Functions acting on the

Canonical Binary Tree, including those supporting concurrent execution, can be

implemented independent of the ADT.

The main contribution of this section is the development of an Immutable

Data Structure that separates the concerns of the structure from those of the

ADT to which it conforms. This section focuses on techniques for specialising

the Canonical Binary Tree so that a mechanism to allow concurrent access can

be implemented independent of the ADT.

3.5.1 Priority Queue

A priority queue associates a priority with a data value so that the value asso-

ciated with the highest priority can be recovered. Priority queues are used to

schedule operating system tasks and to solve the selection problem, which is to

return the kth largest element from a set of elements.

A priority queue has a Push() function to insert a value with an associated

priority into the structure. It has a Top() function that returns the value with the

highest priority and a Pop() function that removes that value. It is conventional

to regard low numbers as high priorities.

Hinze describes an implementation of a purely functional priority queue based

on a min-tree [HP05]. The min-tree is a type of tournament tree in which the

annotation of a leaf is the priority and the annotation of a node is the minimum

annotation of its children. This property causes the annotation of the root node

to be equal to the lowest priority of any leaf. A path from the root to the leaf

with the highest priority is found by examining the annotation of the root node

and then repeatedly choosing the child node with matching priority until a leaf

is reached.

Figure 3.1 illustrates an example of a min-tree.

The min-tree corresponds to a mathematical expression in which the minimum

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 3

1

2 1

2 5 1 3

10

g

2

b

6

5

h

1

9

d

3

a

14

j

6

f

7

i

1

e

12

c

Figure 3.1: Example Min-tree containing the priority value pairs {1 7→ e, 2 7→
b, 3 7→ a, 5 7→ h, 6 7→ f, 7 7→ i, 9 7→ d, 10 7→ g, 12 7→ c, 14 7→ j}. The shaded
vertices illustrate the path to the value with the highest priority.

1

1
3

d

2
1

c

2

a

4

b

(a)

1

2 1

2

a

4

b

1

c

3

d

(b)

1

2

a
1

4

b
1

1

c

3

d

(c)

Figure 3.2: Associativity property of a min-tree. Min-trees with differ-
ent topologies maintain the property that the root node is annotated with the
minimum annotation of any leaf. The shaded vertices illustrate the path to the
highest priority element.

4 CONTENTS

V1

1

V0

1

1 33

1

A

2

B

5

E

3

C

4

4

D

(a)

2

2

B

3

4

D

3

C

V1

1

A

1

1

V0

(b)

Figure 3.3: Insertion and removal of an element in a min-tree.
(a) Insertion of an element into an immutable min-tree. Version V0 contains the
priority value pairs {1 7→ A, 2 7→ B, 3 7→ C, 5 7→ E}. The operation Push(4 7→
D) creates version V1 containing the priority value pairs {1 7→ A, 2 7→ B, 3 7→
C, 4 7→ D, 5 7→ E}. The path created by the operation is shaded.
(b) Removal of an element from an immutable min-tree. Version V0 contains
the priority value pairs {1 7→ A, 2 7→ B, 3 7→ C, 4 7→ D}. The operation Pop()
creates version V1 containing the priority value pairs {2 7→ B, 3 7→ C, 4 7→ D}.
The path created by the operation is shaded.

function is applied to the priorities. The minimum function is both associative

and commutative so the min-tree maintains the property that the annotation of a

node is equal to the minimum priority of any leaf in the subtree that it suspends,

regardless of the topology of that subtree.

Figure 3.2 illustrates the associativity property of the minimum function.

The Push() function inserts a value into the min-tree by creating a new leaf

containing the value and annotated by the priority. A new path from the root to

this leaf is created by path copying. The annotation of each node on the path is

set to be the minimum of the annotations of its children. Path copying creates

an entirely new path so the annotations of existing nodes are unaffected by the

operation. The Push() function can insert a leaf anywhere in the tree because

the minimum function is commutative.

The Pop() function removes the value with the highest priority from the

immutable min-tree by creating a new path which makes the leaf with the highest

priority unreachable. The root node is annotated with the next highest priority.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 5

Figure 3.3 illustrates the insertion and removal of an element from a min-tree.

Figure 3.4 illustrates the growth of an immutable min-tree. Successive leaves

are added through a process of path copying. The properties of the min-tree are

preserved by each version.

The min-tree requires that the children of a node are examined when deter-

mining the path. If the path could be determined without accessing the children

then the number of nodes accessed when traversing a path would be approxi-

mately halved.

In the context of concurrent execution the benefit of determining the path

without accessing the children is significant because nodes that are read while

traversing the path must be recorded to ensure correct concurrent execution. It

is therefore beneficial to restrict node access to those nodes actually on the path.

The min-tree requires that both the comparison and the annotator function

are supplied as specialising functions. The annotation of the root node is followed

to the leaf. This requires a special comparison operation to reach the highest

priority element because the value of the annotation of the root node must be

retained while following the path. If the path could be determined without spe-

cialising the comparison operation then the amount of information required to

describe the data structure would be reduced.

The min-tree does not specify a representation of the empty priority queue. If

a representation of the empty priority queue were specified it would be possible

to distinguish an empty priority queue from a non-existent queue.

In a typical priority queue implementation the Pop() function behaves differ-

ently when removing the last remaining element in a data structure because the

data structure is subsequently empty. In the concurrent execution environment

the status of a data structure between function calls is unknown so it is necessary

that the data structure represents and includes checks for an empty queue in

access function.

The functions Top(), Push() and Pop() are specific to the priority queue

ADT. If these functions could be specified as adaptations of the access functions

of the Canonical Binary Tree then it would be possible to abstract the priority

queue ADT from the data structure that implements it.

6 CONTENTS

4

D

V0

(a)

V0

4

D

V1

1

1

A

(b)

V0

4

D

V1

1

V2

1

2

1

A

2

B

(c)

V0

4

D

V1

1

V2

1

V3

1

1

A

2

2

3

3

C

2

B

(d)

Figure 3.4: Animation showing the growth of a min-tree through a series
of insertions. A new version of the data structure is created by each operation.
In each case the path created by the operation is shaded.
(a) Initial data structure containing the priority value pair 4 7→ D.
(b) After Push(1 7→ A)
(c) After Push(2 7→ B)
(d) After Push(3 7→ C).

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 7

-1

1

3

2

2

1

-8

2

-1

5

-8

1

*

3

10

g

2

b

1

6

5

h

11

1

9

d

3

a

*

6

f

7

i

1

e

12

c

Figure 3.5: Example Directed min-tree containing the priority value pairs
{1 7→ e, 2 7→ b, 3 7→ a, 5 7→ h, 6 7→ f, 7 7→ i, 9 7→ d, 10 7→ g, 12 7→ c}. The
shaded vertices illustrate the path to the highest priority element. The sentinel
is the right-most leaf of the tree. The first annotation is shown above the second
annotation.

3.5.2 Directed min-tree

A new data structure, the directed min-tree, implements the priority queue ADT

and addresses the shortcomings of the min-tree.

The min-tree suffers from the problem that the annotations of both of the

children must be examined to determine the path. The directed min-tree solves

this problem by regarding the annotation as a pair of values. One value contains

the minimum value of the child annotations and the other contains an indicator

as to whether the left or right child of a node has a lower annotation value.

Figure 3.5 illustrates the annotations of a directed min-tree. The annotation

pair contains two values that we call the first and second annotations of the

node. In the figure the first annotation is shown above the second annotation.

The first annotation is calculated by subtracting the second annotation of the

left child from the second annotation of the right child. The second annotation

is the minimum of the second annotations of the children. The first annotation

of a leaf is not used and its second annotation is the priority associated with the

application value.

8 CONTENTS

Only the first annotation of a node is examined when traversing the path.

This annotation indicates which child has the minimum second annotation. The

path to the leaf with the highest priority can be found by comparing the first

annotation of each node with zero. If it is greater than zero then the left child

is on the path, so to determine the path it is only necessary to examine the

annotations of nodes on the path.

The min-tree suffers from the problem that both the comparison operation

and the annotator function must be supplied as specialising functions, whereas

the directed min-tree requires only that the annotator function be specified. The

comparison function is regarded as a feature of the Canonical Binary Tree com-

mon to all ADTs.

The comparison function and the path determination process are the same

regardless of the ADT being implemented, so the query() function is ADT ag-

nostic. For example, the Top() function is implemented as a Canonical Binary

Tree query() function with an access parameter of zero. Path determination

is a common feature of the query(), insert() and delete() functions so the im-

plementation of each function is simplified by making path determination ADT

agnostic.

The min-tree suffers from the problem that the annotation of the root node

must be an argument to the comparison function for every node on the path,

whereas the directed min-tree does not treat the root node as special and does

not require an annotation to be retained while determining the path.

The min-tree suffers from the problem that it does not specify a representation

of the empty priority queue, whereas the directed min-tree contains a sentinel

that can be used to distinguish an empty data structure from a non-existent data

structure. The sentinel is annotated in such a way that it cannot be removed

from the tree.

The access parameter of the insert() function identifies a leaf in the data

structure. When a new leaf is inserted to the min-tree it can be inserted either to

the left or the right of this leaf because the minimum function is commutative so

it does not matter on which side of the path the insertion takes place. However,

the Canonical Binary Tree requires that the sentinel is always the right most leaf.

To ensure this, the insert function always inserts a new leaf to the left of the path

identified by the access parameter. When the tree is created the sentinel is the

only leaf and the insert() function always inserts leaves to the left of the path,

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 9

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < d− b,min(b, d) >
identity <,∞ >

API function Canonical Binary Tree
access function

Push(priority) insert(priority)
Pop() delete(0)
Top() query(0)

Table 3.1: Directed min-tree implementation. The Canonical Binary Tree
can be specialised implement a directed min-tree and its access functions can be
adapted to present a priority queue ADT to the application.

so the sentinel will always remain the right-most leaf of the tree.

The sentinel must be annotated in such a way that the left child of its parent

is always chosen by the query() and delete() functions because the sentinel is un-

reachable by query() and cannot be removed by delete(). The second annotation

of the sentinel is infinity which causes its parent to have a first annotation value

of infinity so a path through the directed min-tree will include the sentinel only

when the tree is empty. In practice, the sentinel is annotated with the highest

value of the data type of the annotation.

The min-tree suffers from the problem that the ADT cannot be completely

abstracted from the data structure that implements it, whereas the directed min-

tree can be implemented by specifying access arguments to adapt the functions

of the Canonical Binary Tree.

Table 3.1 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the priority queue ADT. The annotator func-

tion returns the annotation of a node given the annotations of its children. The

identity is the annotation of the sentinel. The Push() function is implemented by

the insert() function of the Canonical Binary Tree. The Pop() function is imple-

mented by the delete() function, The value with the highest priority will always

be found by specifying an access argument of zero as the access parameter of the

delete() function. Similarly, the Top() function is implemented by a query() with

an access argument of zero.

10 CONTENTS

g b h d a jf i e c

Figure 3.6: Example Deque containing the values {g, b, f, i, h, d, e, c, a, j}.

3.5.3 Deque

A deque data structure contains an ordered list of elements and only permits

access to those elements at either end of the list. The functionality of the data

structure can be further restricted to implement a queue or stack.

A deque is regarded as having a front and a back. The Push front() function

inserts a value onto the front of the deque. The Front() function returns that

value. The Pop front() function removes the value at the front of the deque. The

corresponding functions Push back(), Back() and Pop back() affect the back of

the deque.

Hinze describes an implementation of an immutable deque based on the or-

dering of leaves of a binary tree [HP05].

Figure 3.6 illustrates an example of a deque.

The vertices of the tree are not annotated. The front of the deque is found

by choosing the left child of each node starting from the root node. The order of

the leaves is preserved.

Figure 3.7 illustrates the insertion and removal of an element in a deque.

Figure 3.8 illustrates the growth of the immutable deque. Successive leaves

are added through a process of path copying.

The deque corresponds to an expression in which the list concatenation func-

tion is applied to the values. The concatenation function is associative so the

deque maintains the property that the annotation of a node is equal to the con-

catenation of the values of the leaves in the subtree that it suspends. It is not

necessary to annotate the nodes with the value of the concatenation. List con-

catenation is not commutative so the order of leaves must be maintained during

any transformation of the tree.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 11

V1 V0

A B C D E

(a)

B DC

V1

A

V0

(b)

Figure 3.7: Insertion and removal of an element in a deque.
(a) Insertion of an element into an immutable deque. Version V0 contains the
values {B,C,D,E}. The operation Push front(A) creates version V1 containing
the values {A,B,C,D,E}. The path created by the operation is shaded.
(b) Removal of an element from an immutable deque. Version V0 contains the
values {A,B,C,D}. The operation Pop front() creates version V1 containing
the values {B,C,D}. The path created by the operation is shaded.

Special comparison functions are required to reach the front and back of the

deque. One of the comparison functions creates a path to the front of the queue

by always selecting the left child. The other comparison function accesses the

back of the queue.

This deque suffers from some of the same shortcomings as the priority queue,

it requires the implementation of access functions that are specific to the deque

ADT, it requires multiple comparison functions and it does not distinguish an

empty deque from a non-existent deque.

3.5.4 Directed deque

A new data structure, the directed deque, addresses the shortcomings of the

deque. It supports a sentinel and fully abstracts the ADT implementation from

the functions of the Canonical Binary Tree.

The nodes are annotated with a pair formed from the second annotation of

the child on the right and the second annotation of the child on the left. The first

annotation of a leaf is not used and the second annotation is zero. The second

12 CONTENTS

D

V0

(a)

V0

D

V1

C

(b)

V2 V1 V0

DB C

(c)

V3 V2 V1 V0

DB CA

(d)

Figure 3.8: Animation showing the growth of an immutable deque
through a series of insertions. New versions of the data structure are created
by each operation. In each case the path created by the operation is shaded.
(a) Initial deque.
(b) After Push front(C)
(c) After Push front(B)
(d) After Push front(A)

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 13

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

g

0

b

0

0

0

h

0

0

0

d

0

a

1

0

f

0

i

0

e

0

c

Figure 3.9: Example Directed deque containing the values
{g, b, f, i, h, d, e, c, a}. The shaded vertices illustrate the path to the back
of the queue. The sentinel is the right-most leaf of the tree. The first annotation
is shown above the second annotation.

annotation of the sentinel is one.

Figure 3.9 illustrates an example of a Directed deque.

The sentinel is annotated in such a way that it cannot be removed from the tree

and leaves cannot be inserted to the right of the sentinel. Using the annotation

scheme three leaves are reachable. The left-most leaf, the sentinel and the leaf to

the left of the sentinel.

The Push front(), Front() and Pop front() functions are implemented by

the Canonical Binary Tree functions insert(), query() and delete() each called

with an access parameter of zero which causes the path to the front of the queue

to be selected. The Push back() function is implemented by the insert() function

with an access parameter of infinity, which causes a path to the sentinel to be

selected. Insertion takes place to the left of the sentinel which causes an element

to be added to the back of the queue. The Back() and Pop back() functions are

implemented by the query() and delete() functions with an access parameter of

one which causes a path to the back of the queue to be selected.

Table 3.2 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the directed deque ADT.

14 CONTENTS

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < d, b >
identity <, 1 >

API function Canonical Binary Tree
access function

Push front() insert(0)
Pop front() delete(0)
Front() query(0)
Push back() insert(∞)
Pop back() delete(1)
Back() query(1)

Table 3.2: Directed deque implementation. The Canonical Binary Tree
can be specialised to implement a Directed deque and its access functions can be
adapted to present a deque ADT to the application.

1

0

0

0

1

0

0

0

c

0

a

0

b

(a)

0

0

0

0

1

0

0

a

0

b

0

c

1

(b)

0

0

0

a

0

0

0

b

1

0

0

c

1

(c)

Figure 3.10: Associativity property of a directed deque. Directed deques
with different topologies maintain the order of their leaves. The path to the back
of the queue is shaded.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 15

6

14

2

6

10

14

0

2

5

6

7

10

12

14

0

e

2

b

3

5

6

f

9

10

7

i

12

c

14

j

3

a

5

h

9

d

10

g

Figure 3.11: Example interval tree containing the key-value pairs {0 7→ e, 2 7→
b, 3 7→ a, 5 7→ h, 6 7→ f, 7 7→ i, 9 7→ d, 10 7→ g, 12 7→ c, 14 7→ j }. The shaded path
illustrates the mapping 9 7→ d.

Figure 3.10 illustrates the associativity property of the Directed deque. The

associativity property allows the topology of the data structure to be modified

without affecting the functionality provided by the ADT.

3.5.5 Map

A map is a sorted associative data structure that provides access to a set of key-

value pairs. It also supports in-order traversal of leaves in sorted order. The

functionality that the map ADT provides is similar to that of a C++ STL map

[Jos99].

A map has an Insert() function that inserts a key-value pair, a Query()

function that retrieves an application value given its key and a Remove() function

that removes the key-value pair from the map.

Hinze describes an implementation of an immutable map using an interval

tree [HP05].

Figure 3.11 illustrates an interval tree.

A interval tree corresponds to a mathematical expression in which the maxi-

mum and minimum functions are applied to the annotations. The first annotation

16 CONTENTS

2

3

1

2

3

d

0

1

2

c

0

a

1

b

(a)

1

3

0

1

2

3

0

a

1

b

2

c

3

d

(b)

0

3

0

a

1

3

1

b

2

3

2

c

3

d

(c)

Figure 3.12: Associativity property of an interval tree. Interval trees with
different topologies maintain the property that the first annotation of a node is
the highest first annotation in the subtree suspended on the left and the second
annotation is the highest first annotation in the subtree suspended on the right.

of a node is the minimum of the second annotations of its children. The second an-

notation of a node is the maximum of the second annotations of its children. The

minimum and maximum functions are associative, so during topological trans-

formations the interval tree maintains the property that the first annotation of

a node is the maximum key in the sub-tree suspended by its left child and the

second annotation of a node is the maximum key in the sub-tree suspended by

its right child.

Figure 3.12 illustrates the associativity property of the interval tree.

The key is the access parameter for the functions of the data structure. A

path from the root to a leaf with a given key is found by repeatedly checking

for a leaf and then comparing the key to the first annotation of the node. If the

key is greater than the first annotation then the right child of the node is on the

path. If a leaf with a given key is not present in the interval tree then a leaf with

a different key will be found. It is not necessary to access the children of a node

in order to determine the path.

Figure 3.13 illustrates the insertion and removal of an element in an interval

tree.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 17

V0

2

5

V1

2

5

1

2

3

5

3

5

1

A

2

B

5

E

3

C

4

5

4

D

(a)

2

4

1

2

4

D

1

A

2

B

V1

3

C

3

4

2

4

V0

(b)

Figure 3.13: Insertion and removal of an element in an interval tree.
(a) Insertion of an element into an immutable interval tree. Version V0 contains
the key-value pairs {1 7→ A, 2 7→ B, 3 7→ C, 5 7→ E}. The operation Insert(4 7→
D) creates version V1 containing the key-value pairs {1 7→ A, 2 7→ B, 3 7→ C, 4 7→
D, 5 7→ E}. The path created by the operation is shaded.
(b) Removal of an element from an immutable interval tree. Version V0 contains
the key-value pairs {1 7→ A, 2 7→ B, 3 7→ C, 4 7→ D }. The operation Remove(3)
creates version V1 containing the key-value pairs {1 7→ A, 2 7→ B, 4 7→ D}. The
path created by the operation is shaded.

18 CONTENTS

4

D

V0

(a)

V0

4

D

V1

1

4

1

A

(b)

V2

1

4

V1

1

4

V0

4

D

1

A

2

4

2

B

(c)

V3 V2

1

4

V1

1

4

V0

1

4

4

D

1

A

2

4

2

4

3

4

3

C

2

B

(d)

Figure 3.14: Animation showing the growth of an interval tree through
a series of insertions. New versions of the data structure are created by each
operation. In each case the path created by the operation is shaded.
(a) The initial data structure containing the key-value pair 4 7→ D.
(b) After Insert(1 7→ A)
(c) After Insert(2 7→ B)
(d) After Insert(3 7→ C)

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 19

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < min(b, d),max(b, d) >
identity <,∞ >

API function Canonical Binary Tree
access function

Insert(key) insert(key)
Remove(key) delete(key)
Query(key) query(key)

Table 3.3: Map implementation. The Canonical Binary Tree can be spe-
cialised to implement an interval tree and its access functions can be adapted to
present a map ADT to the application.

Figure 3.14 illustrates the growth of the immutable interval tree.

The interval tree suffers from the problem that it does not specify a represen-

tation of the empty map.

3.5.6 Interval tree with sentinel

The Canonical Binary Tree can be adapted to implement an interval tree with a

sentinel. The first annotation of the sentinel is not used and the second annotation

is infinity. In practice, the sentinel is annotated with the maximum value of its

data type.

Table 3.3 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the map ADT.

The Query() function returns a value for every possible value of the access

parameter, even when the access parameter does not match a key. This is not

the behaviour typically expected of a map. The ADT wrapper functions can

implement checks to ensure that the value retrieved by a query corresponds to

the key and that duplicate keys are handled appropriately.

A Query() function that checks that value returned corresponds to the key

supplied as an access parameter can be implemented by storing the value of the

key as part of the application value. In a concurrent execution environment the

annotation of a leaf cannot be used for this purpose as it is regarded as structural

information and is not accessible through the functions of the Canonical Binary

Tree.

20 CONTENTS

10

5 5

2 3 3 2

1

[1] g

1

[2] b

2

1

[5] h

2

1

[6] d

1

[9] a

1

[10] j

1

[3] f

1

[4] i

1

[7] e

1

[8] c

Figure 3.15: Example Sequence tree containing the values {[1]g, [2]b, [3]f, [4]i,
[5]h, [6]d, [7]e, [8]c, [9]a, [10]j}

A set ADT can be implemented by an interval tree that does not permit dupli-

cate values. To implement the set ADT the Insert() function should call query()

to ensure the uniqueness of a value before calling insert(). In a concurrent exe-

cution environment the Canonical Binary Tree functions should be referentially

transparent so the insert() function, which alters the Canonical Binary Tree,

cannot give any indication of success.

3.5.7 Vector

A vector is an ordered set of values that supports random access based on ordinal

number. The vector ADT provides a similar set of functions to the deque ADT

in addition to random access to ordinals within the sequence. The functionality

that the vector ADT provides is similar to that of a C++ STL map [Jos99].

The Insert() function inserts an ordinal value pair into the vector. The

Query() function is supplied with an ordinal as the access parameter. The func-

tion returns the value associated with the ordinal. The Remove() function deletes

an ordinal value pair from the data structure. An in-order traversal of the vector

returns values in the order given by their ordinal number.

Hinze describes an implementation of an immutable vector based on a se-

quence tree [HP05].

A node of the tree is annotated with the sum of the annotations of its children.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 21

4

3
1

[4] d

2
1

[3] c

1

[1] a

1

[2] b

(a)

4

2 2

1

[1] a

1

[2] b

1

[3] c

1

[4] d

(b)

4

1

[1] a
3

1

[2] b
2

1

[3] c

1

[4] d

(c)

Figure 3.16: Associativity property of a sequence tree. Sequence trees
with different topologies maintain the property that a node is annotated with the
sum of the annotations of its children.

A leaf of the tree is annotated with a value of one.

Figure 3.15 illustrates the sequence tree. The ordinal numbers shown in square

brackets are for illustration purposes only and are not part of the data structure.

A vector corresponds to a mathematical expression in which the addition func-

tion is applied to a value of one. Addition is both associative and commutative,

so the vector maintains the property that the annotation of a node contains the

sum of the number of leaves in the subtree that it suspends, regardless of the

topology of that subtree.

Figure 3.16 illustrates the associativity property

To locate a leaf with a given target ordinal the annotations of the children

of the root node are examined. If the target ordinal is greater than or equal to

the annotation of the left child then the right child is on the path. If the right

path is chosen then the annotation of the left path is subtracted from the target

ordinal number. If the left path is chosen then the target ordinal is unchanged.

The comparison process continues at each node until a leaf is reached.

Figure 3.17 illustrates the insertion and removal of an element in an immutable

sequence tree.

Figure 3.18 illustrates the growth of the immutable sequence tree.

The vector ADT can be restricted to implement an immutable array. To

implement an immutable array a vector is populated with values before normal

22 CONTENTS

V1 V0

5 4

3 22

2

1

C

1

B

1

D

1

E

1

A

(a)

3

1

B

2

1

D

1

C

V1

1

A

2

4

V0

(b)

Figure 3.17: Insertion and removal of an element in an immutable se-
quence tree.
(a) Insertion of an element into an immutable sequence. Version V0 contains the
sequence {[1]B, [2]C, [3]D, [4]E}. The operation Insert([1]A) creates version V1
containing the sequence {[1]A, [2]B, [3]C, [4]D, [5]E}. The path created by the
operation is shaded.
(b) Removal of an element from an immutable sequence. Version V0 contains the
sequence {[1]A, [2]B, [3]C, [4]D} The operation Remove([1]) creates version V1
containing the sequence {[1]B, [2]C, [3]D}. The path created by the operation is
shaded.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 23

1

[1] D

V0

(a)

V1 V0

2

1

[2] D

1

[1] C

(b)

V2 V1

3

V0

2

1

[3] D

2

1

[2] C

1

[1] B

(c)

V0

1

[4] D

V1

2

V2

3

V3

4

3

2

1

[3] C

2

1

[1] A

1

[2] B

(d)

Figure 3.18: Animation showing the growth of an immutable sequence
tree through a series of insertions. New versions of the data structure are created
by each operation. In each case the path created by the operation is shaded.
Version V3 represents the sequence {[1]A, [2]B, [3]C, [4]D}
(a) Initial data structure containing the value D.
(b) After Insert([1]C)
(c) After Insert([1]B)
(d) After Insert([1]A)

24 CONTENTS

access is permitted. Replacement is a compound operation formed by an insert

and a remove operation acting on elements with the same ordinal number. It is

the only operation normally permitted by a vector implementing an array.

The sequence suffers from some of the same shortcomings as the priority

queue, it requires the implementation of access functions which are specific to

the vector ADT and it does not distinguish an empty vector from a non-existent

vector.

3.5.8 Directed sequence

A new data structure, the directed sequence, addresses the shortcomings of the

sequence tree. The comparison function of the sequence accesses only the node

annotation. The directed sequence supports a sentinel and fully abstracts the

ADT implementation from the functions of the Canonical Binary Tree.

The sequence requires that the annotations of the children of a node are

examined to determine the path and this results in unnecessary accesses to nodes

that are not on the path. To avoid these accesses a node should be annotated in

such a way that the direction of the path can be determined without accessing the

annotations of its children. This can be achieved by a regarding the annotation

as a pair.

The second annotation, of the directed sequence, is the sum of the second

annotations of the left and right children. The first annotation is set to the

value of the second annotation of the left child. The first annotation is used to

determine the path.

Figure 3.19 illustrates an example of a directed sequence.

To locate a leaf with a given target ordinal that ordinal is compared with the

first annotation of the root node. If it is greater the right child is chosen otherwise

the left child is chosen. This process is repeated until a leaf is reached. When

a right child is chosen the second annotation of the child is subtracted from the

target ordinal.

The sentinel is always the right-most leaf of the Canonical Binary Tree. To

support the Back() and Push back() functions the sentinel and the leaf to the left

of the sentinel must be annotated in such a way that they can be found without

specifying an ordinal. The ADT specifies a special value which causes the second

annotation of the root to be used as the access argument. The second value of

the root is the number of elements in the sequence, including the sentinel.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 25

5

10

2

5

3

5

1

2

2

3

1

3

1

2

1

[1] g

1

[2] b

1

2

1

[5] h

1

2

1

[6] d

1

[9] a

1

1

[3] f

1

[4] i

1

[7] e

1

[8] c

Figure 3.19: Example Directed sequence containing the values:
{[1]g, [2]b, [3]f, [4]i, [5]h, [6]d, [7]e, [8]c, [9]a}. The shaded path illustrates the ac-
cess to the leaf with an ordinal of seven. The sentinel is the right-most leaf. The
first annotation is shown above the second annotation.

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < b, b + d >
identity <, 1 >

API function Canonical Binary Tree
access function

Insert(ordinal) insert(ordinal)
Remove(ordinal) delete(ordinal)
Query(ordinal) query(ordinal)
Push front() insert(0)
Pop front() delete(0)
Front() query(0)
Push back() insert(?)
Pop back() delete(?− 1)
Back() query(?− 1)

Table 3.4: Directed sequence implementation. The Canonical Binary Tree
can be specialised implement a directed sequence and its access functions can be
adapted to present a vector ADT to the application. The second annotation of
the root is represented by a star.

26 CONTENTS

Table 3.4 contains all of the information required to specialise the Canonical

Binary Tree so that it implements the vector ADT. The value of the second

annotation of the root node is represented by a star.

The functions of the Canonical Binary Tree are complete so all values of the

access parameter are valid arguments. An ordinal value less than or equal to

one refers to ordinal number one. However, an ordinal number equal to or higher

than the number of elements in the sequence refers to the sentinel. The Remove()

function verifies that its access argument is less than the second annotation of

the root.

The directed sequence permits access to all leaves using their ordinal number.

The ordinal is relative to the start of the sequence. Array indexes map to ordinals

which start at one. For example, the Query(0), Query(1) and Front() functions

have the same effect.

An immutable array can be created by restricting the functions of the vector.

The sequence implementation requires that a value is retained and decre-

mented while determining the path, so the function that determines the path

through the data structure is specific to the vector ADT. This is unfortunate

as some of the generality of the Canonical Binary Tree must be sacrificed to

support the sequence. In our implementation the Canonical Binary Tree func-

tions are supplied with an additional parameter which alters the mechanism for

determining the path when implementing a sequence.

The sequence implementation requires that the ADT has access to the sec-

ond annotation of root node. This is unfortunate as annotations are structural

information that should not be exposed to the application.

3.5.9 Previous work

Anderson describes how the comparison operations used to determine the path

through an interval tree can be confined to those nodes that are actually on the

path [AN95]. We extend this idea and apply it to immutable min-trees, deques

and sequence trees.

Bibliography

[AN95] Arne Andersson and Stefan Nilsson. Efficient implementation of suffix

trees. Softw. Pract. Exper., 25:129–141, February 1995.

[HP05] R Hinze and R Paterson. Finger trees: a simple general-purpose data

structure. J. Funct. Prog., 16(02):197–217, 2005.

[Jos99] Nicolai M. Josuttis. The C++ Standard Library: A tutorial and reference.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

27

	Abstract Data Types for Immutable Data
	Priority Queue
	Directed min-tree
	Deque
	Directed deque
	Map
	Interval tree with sentinel
	Vector
	Directed sequence
	Previous work

	Bibliography

