Contents

4.4 Minimum Spanning Tree 2
4.4.1 Experiment 2
442 Results. 4
4.4.3 Method 6
4.4.4 Serial Graph Colouring Implementation 7
4.4.5 Serial No-Colouring Implementation. 8
4.4.6 The concurrent implementation of Prim’s algorithm 9
4.4.7 Concurrent Graph Colouring Implementation 9
4.4.8 Previouswork oo 10
4.4.9 Concurrent No-Colouring Implementation 11
4.4.10 The performance of the Concurrent No-Colouring Imple-
mentation Lo 13
Bibliography 15

2 CONTENTS

4.4 Minimum Spanning Tree

The problem of finding the minimum spanning tree of a graph is typical of com-
binatorial problems which exhibit fine-grained irregular parallelism. Researchers
have been frustrated in their attempts to exploit this parallelism and for many
types of graph the fastest known algorithms are serial. To evaluate our check
pointing technique we measure the performance of a concurrent implementation
of a minimum spanning tree algorithm that uses entangled Immutable Data Struc-
tures. We find that our concurrent implementation does not perform as well as
a serial implementation.

The problem is to determine the minimum spanning tree of a connected undi-
rected graph with weighted edges. The minimum spanning tree of a graph is an
acyclic sub-graph which connects all of the vertices and has the minimum weight.

Sedgewick explains the problem in detail and describes a number of serial
algorithms for computing the minimum spanning tree [Sed02]. The minimum
spanning tree problem is one of the most important in combinatorics. Ahuja
describes how many problems in network routing and linear programming are
related to the problem of finding the minimum spanning tree [AMO93].

A minimum spanning tree is the tree of edges T € G(V, E) with minimal

weight:

W(T)= Y W((uv))

(u,0)eT

where W ((u,v)) is the weight of an edge (u,v).

The main contribution of this section is the evaluation of an algorithm which
uses entangled Immutable Data Structures to facilitate the check pointing of
speculative execution. This section focuses on comparing the times taken to

determine the minimum spanning tree of an undirected planar graph.

4.4.1 Experiment

Prim describes an algorithm to determine the minimum spanning tree of a graph
[Pri57]. To evaluate our check pointing technique we compare the performance
of a concurrent implementation that uses entangled Immutable Data Structures
with a concurrent implementation that uses Software Transactional Memory. We

also compare these concurrent implementations with their serial counterparts.

4.4. MINIMUM SPANNING TREE 3

Prim’s algorithm is typically implemented using a mutable adjacency list to
represent the graph and its minimum spanning tree and a priority queue from
which minimally weighted edges are chosen. The implementation records whether
edges belong to the minimum spanning tree by storing a value, which is usually
referred to as a colour, as an edge property in the adjacency list. We call this
a Serial Graph Colouring Implementation of Prim’s algorithm. We use the ad-
jacency list and the Serial Graph Colouring Implementation of Prim’s algorithm
from the Boost graph library. Siek describes the format of the adjacency list in
detail [SLLO1].

Section 4.4.3 describes the experimental set up.

Section 4.4.4 describes the Serial Graph Colouring Implementation of Prim’s

algorithm.

We develop an implementation of Prim’s algorithm that uses a set, instead of
graph colouring, to represent the minimum spanning tree. We call this a Serial
No-Colouring Implementation of Prim’s algorithm. This serial implementation is
used to measure the effect that maintaining the minimum spanning tree in a set,
rather than in the adjacency list, has on the execution time of the algorithm. We
use a data structure from the C++ standard template library to implement the set
of edges representing the minimum spanning tree and we also use a priority queue
from the standard library [Jos99]. The graph is implemented by an immutable

adjacency list from the Boost library.

Section 4.4.5 describes the Serial No-Colouring Implementation of Prim’s al-

gorithm.

A Concurrent Graph Colouring Implementation of Prim’s algorithm must

ensure the correctness of concurrent accesses to the edge colours.

Section 4.4.6 explains why a Concurrent Graph Colouring Implementation of
Prim’s algorithm that executes efficiently on a Chip Multi-Processor is difficult

to construct.

Kang developed a concurrent implementation of Prim’s algorithm using Soft-
ware Transactional Memory [KB09]. We call this a Concurrent Graph Colouring
Implementation of Prim’s algorithm. The implementation allows some specula-

tive execution by lazily detecting conflicting accesses to the graph colours.

Section 4.4.7 describes Kang’s Concurrent Graph Colouring Implementation

of Prim’s algorithm.

4 CONTENTS

We develop a concurrent implementation of Prim’s algorithm which uses en-
tangled Immutable Data Structure to allow check pointing, backtracking and roll-
back to a previous state of the algorithm. We call this a Concurrent No-Colouring
Implementation of Prim’s algorithm. The implementation uses an immutable set,
to represent the minimum spanning tree, and an immutable priority queue, from
which minimally weighted edges are chosen. Both of these data structure are spe-
cialisations of the Canonical Binary Tree. The data structures are entangled to
facilitate check pointing. The graph is implemented by an immutable adjacency
list from the Boost library.

Section 4.4.9 describes the Concurrent No-Colouring Implementation of Prim’s

algorithm.

4.4.2 Results

Our experiment shows that the Concurrent No-Colouring Implementation of
Prim’s algorithm takes longer to determine the minimum spanning tree of a graph
than either the Serial Graph Colouring Implementation or the Serial No-Colouring
Implementation for all graph sizes. The Serial No-Colouring Implementation of
the algorithm takes about twice as long as the Serial Graph Colouring Implemen-
tation for all graph sizes.

Figure 4.1 illustrates a comparison of the elapsed time taken to determine the
minimum spanning tree of a graph.

The Concurrent No-Colouring Implementation does not return the memory
used by the Immutable Data Structures because they are persistent. Only 32 GB
of memory are available to contain the persistent data structures on the evalua-
tion hardware and this limited the maximum size of the graph whose minimum
spanning tree could be determined to 2'Y vertices.

The topology of the graphs representing the road maps of urban states differs
from those of more rural states. This accounts for some of the variation in elapsed
time taken to calculate the minimum spanning tree of states with similar numbers
of vertices.

This thesis does not make any claims about the absolute performance of Im-
mutable Data Structures. However, even when using 8 hardware threads the
Concurrent No-Colouring Implementation takes longer to calculate the minimum
spanning tree than either serial algorithm.

Section 4.4.10 describes how the performance of the Concurrent No-Colouring

4.4. MINIMUM SPANNING TREE 5

4.5 ki

/
, /
/ /
- K / i
. , /
; /
! /
. /

Elapsed time (seconds)
N
(6}

1.5

14 15 16 17 18 19 20
log,(Number of vertices)

Figure 4.1: Comparison of the elapsed time taken to calculate the mini-
mum spanning tree of planar undirected graphs representing road maps of US
states.

The elapsed time taken by the Serial Graph Colouring Implementation (+), the
Serial No-Colouring Implementation (x) and the Concurrent No-Colouring Im-
plementation (*) is plotted against varying graph sizes. We uses a log scale to
represent the number of vertices in the graph.

Eight hardware threads participate in the concurrent execution. Each hardware
thread executes on a dedicated processor. Figures given are the mean of 10
measurements.

6 CONTENTS

Implementation can be improved.

Kang provided results for a Concurrent Graph Colouring Implementation
which uses Software Transactional Memory [KB09]. Kang measured the elapsed
time taken to calculate the minimum spanning tree of a planar graph with 222
edges. Unfortunately, we were not able to calculate the minimum spanning tree
of a graph of this size so we cannot make a direct comparison with Kang’s result.

When a single hardware thread was used the elapsed time taken to determine
the minimum spanning tree was 1143 seconds. When using 8 hardware threads,
on the same core, a 14X speed-up was achieved. Kang attributed this super-
linear speed-up to the sharing of cache by the hardware threads. When using 64
hardware threads, on 8 cores, a speed-up of 61.5X was achieved.

Kang attributed 98.5% of the execution time of the Concurrent Graph Colour-
ing Implementation to the overhead of Software Transactional Memory. To over-
come this overhead 64 hardware threads were applied to the problem. Kang
concluded that “even with this level of scalability, our parallel algorithm runs
only at the comparable speed to the single-threaded case which does not incur
the Software Transactional Memory overhead” [KB09].

This thesis claims that the use of Immutable Data Structures can make con-
current programming easier. Kang described the difficulty of ensuring the cor-
rectness of the Concurrent Graph Colouring Implementation which uses locks to
ensure serialisable access to the graph colours “this [acquiring locks] can lead to
many complex scenarios that can cause race conditions, deadlocks, or other com-
plications, and it is far from trivial to write correct and scalable code” [KB09].
Our Concurrent No-Colouring Implementation of Prim’s algorithm requires no
synchronisation. It is not prone to race conditions, because all shared data is
immutable and it is not prone to deadlock because it does not block. Our Con-
current No-Colouring Implementation of Prim’s algorithm was simpler to develop

than the Concurrent Graph Colouring Implementation described by Kang.

4.4.3 Method

Demetrescu describes a set of planar graphs, representing road maps, which were
used during the DIMACS implementation challenge competition [DGJe09]. These
graphs are widely accepted as benchmarks for evaluating minimum spanning tree
algorithms. Each graph node represents an intersection between roads and each

graph edge is weighted with the distance between intersections. The graphs have

4.4. MINIMUM SPANNING TREE 7

an average of 2.7 edges per vertex.

We evaluate our algorithm using a Sun Ultra Sparc T2 server [vVRV109]. The
server contains a single Niagara Chip Multi-Processor which implements simul-
taneous multi-threading, it has 64 hardware threads and 8 physical processors.

Both the hardware and the graph data sets used in our evaluation are identical
to those used by Kang [KB09].

We use an immutable priority queue implemented by a Directed min-tree spe-
cialisation of the Canonical Binary Tree. The Canonical Binary Tree is balanced
but none of the optimisations, suggested in section 77 are implemented. We
also use an immutable set implemented by an interval tree specialisation of the

Canonical Binary Tree.

4.4.4 Serial Graph Colouring Implementation

Prim’s algorithm is based on an observation known as the graph cut property
[Pri57]. A graph cut partitions the vertices of a graph into two disjoint sets.
Given a cut in the graph, any edge between the two sets which has a minimum
weight belongs to some minimum spanning tree of the graph.

Prim’s algorithm grows a minimum spanning tree iteratively from a single
graph edge. The algorithm maintains a set of crossing edges, called the fringe,
which is the set of edges with one vertex in the growing minimum spanning tree
and one outside it.

Initially, both the minimum spanning tree and the fringe are empty. A single
vertex is added to the minimum spanning tree and all of the edges from this
vertex are added to the fringe. At each iteration the minimally weighted edge is
removed from the fringe and added to the growing minimum spanning tree. This
adds a new vertex to the minimum spanning tree and all of the edges from this
vertex to vertices that are not already in the minimum spanning tree are then
added to the fringe. The resulting fringe is processed by the next iteration. The
algorithm completes when the set of vertices outside the minimum spanning tree
is empty and edges in the minimum spanning tree connect all of the nodes in the
graph.

Prim’s algorithm can be implemented by using an adjacency list to represent
the graph. Each graph edge has an associated weight. The minimum spanning
tree is represented by a colour indicator associated with each edge. The fringe is

represented by a priority queue which contains references to edges in the adjacency

8 CONTENTS

list. The priority associated with an edge is the weight of that edge.

Serial Graph Colouring Implementations of Prim’s algorithm are among the
fastest known. Typically, high performance Serial Graph Colouring Implementa-

tions focus on improving the performance of the priority queue.

4.4.5 Serial No-Colouring Implementation

Prim’s algorithm can also be implemented by using a set to maintain the grow-
ing minimum spanning tree instead of colouring graph edges. We call such an
implementation a Serial No-Colouring Implementation because the adjacency list
does not have any mutable properties. The set contains references to edges in the
adjacency list and is used to determine whether an edge is part of the minimum

spanning tree.

The Serial No-Colouring Implementation of Prim’s algorithm uses three data
structures. The graph is represented by a constant adjacency list with weighted
edges. The fringe is represented by a priority queue which orders edges by weight.
The minimum spanning tree is represented by a set of edges. In our implementa-
tion the priority queue is implemented using a vector from the standard library

and the set is implemented using the standard map [Jos99].

The algorithm starts from a single node and adds edges to the minimum
spanning tree iteratively. The edge with the minimum weight is removed from
the priority queue and added to the set to indicate that it is part of the minimum
spanning tree. This adds a new vertex to the minimum spanning tree. The edges
including this vertex, which are not already present in the set, are added to the

priority queue to complete the iteration.

To determine whether an edge is part of the minimum spanning tree a set
look-up is performed. Typically, set look-up takes O(log(n)) time whereas ac-
cessing a mutable graph edge takes O(1) time, so there is a significant overhead
associated with looking up edges in a set. Consequently, it is not common to
implement Prim’s algorithm in this way. Our Concurrent No-Colouring Imple-
mentation maintains the minimum spanning tree an immutable set and uses a
constant adjacency list to avoid sharing mutable data. We implement the Se-
rial No-Colouring Implementation algorithm so that we can measure the effect of

maintaining the growing minimum spanning tree in a set.

4.4. MINIMUM SPANNING TREE 9

4.4.6 The concurrent implementation of Prim’s algorithm

A concurrent implementation of Prim’s algorithm may attempt to combine the
minimum spanning trees of sub-graphs, produced by multiple processors, to form

a larger minimum spanning tree.

Two sub-graphs are disjoint if they do not have any vertices in common. Two
sub-graphs are adjacent if they are disjoint and there is at least one edge joining
vertices which belong to different sub-graphs. The minimum spanning trees of
adjacent sub-graphs can be combined by including the minimally weighted joining
edge in the graph formed by their union. The minimum spanning trees of disjoint
sub-graphs can be combined easily only by growing them until they are adjacent.
The minimum spanning trees of overlapping sub-graphs are difficult to combine.
Ideally, the minimum spanning trees of adjacent sub-graphs should be identified

and combined.

The graph cannot be decomposed into disjoint sub-graphs before the algorithm
starts because this problem is more difficult than the minimum spanning tree
problem itself. Dor proves that the problem of decomposing a graph into disjoint

sub-graphs with no common edges is NP-Complete [DT92].

To permit the combination of minimum spanning trees created concurrently
an algorithm can check that their sub-graphs are disjoint each time a vertex is
added. This imposes a synchronisation overhead on the concurrent implementa-
tion. The implementation can speculate that sub-graphs are disjoint to reduce
the synchronisation overhead. However, it must be prepared to roll-back the

algorithm to the point at which adjacency first occurs.

A concurrent algorithm has the potential to demonstrate speed-up provided it
is faster to check and combine the minimum spanning tree of sub-graphs with the
growing minimum spanning tree than to grow the minimum spanning tree by the
corresponding amount. Once checked, the merging of minimum spanning trees
is straightforward. The problem is to create minimum spanning trees in such a
way that they can be combined without incurring a significant synchronisation

overhead.

10 CONTENTS

4.4.7 Concurrent Graph Colouring Implementation

Kang describes a Concurrent Graph Colouring Implementation of Prim’s algo-
rithm which uses Software Transactional Memory [KB09]. Kang’s implementa-
tion is an application which implements Memory Transactions rather than an
application developed within an existing Software Transactional Memory frame-
work.

Memory operations acting on the graph colours can cause race conditions,
so simultaneous access must be restricted. A naive implementation might seri-
alise every access to the colours but this effectively serialises the entire algorithm,
negating any benefit from concurrent execution. Kang uses Software Transac-
tional Memory to support speculation by buffering memory operations and de-
tecting conflicts. Conflicting accesses to the graph colours are rare so it can be
beneficial to speculate that a conflict did not occur.

Kang’s Concurrent Graph Colouring Implementation relies on the semantics
of memory transactions to avoid data races. Each thread colours the vertices
of its own minimum spanning tree and also colours all of the neighbours of the
marked vertices with a unique colour. The process of picking one vertex and then
applying an operation to its neighbours is encapsulated in a Memory Transaction.
Conflicts are detected by checking the colour of vertices in graph to determine
whether another processor has included the node in its minimum spanning tree.

Our experimental results are directly comparable to those of Kang because we
use identical graph data sets and identical hardware. Unfortunately, Kang was
not able to report concurrent speed-up because the overheads associated with

Software Transactional Memory exceed the benefits of concurrent execution.

4.4.8 Previous work

Boruvka described a concurrent algorithm to determine the minimum spanning
tree of a graph nearly a century ago [NMNO1]. However, realising speed-up from
concurrent execution has proved difficult. Chazelle describes an algorithm which
has the minimal amortised time [Cha00]. Vineet describes an algorithm that
makes use of a graphics processing unit. This speeds-up the calculation of some
very large minimum spanning trees by an order of magnitude when compared with
a serial implementation [VHPNQ09]. In practice, the fastest methods for finding

the minimum spanning tree of a dense graph are based on a serial implementation

4.4. MINIMUM SPANNING TREE 11

of Prim’s algorithm. Bazlamacci presents a survey of high performance minimum
spanning tree algorithms [BHO1]. In the fastest, the fringe is represented by a
priority queue based on a Fibonacci heap. Weiss describes the implementation
of a Fibonacci heap data structure in detail [Wei93].

Dice describes a Concurrent Graph Colouring Implementation of Prim’s algo-
rithm which uses Hardware Transactional Memory [DLMNO09]. Dice uses a form
of Hardware Transactional Memory known as speculative lock elision, which per-
mits speculative access to the graph colours, while relying on hardware to detect
conflicting accesses [RGO1]. Dice implements this algorithm on the Sun ROCK
processor [CCET09]. The implementation difficulty and the modest speed-up
observed may have been factors contributing the cancellation of the ROCK pro-

cessor, which we described in section ?77.

4.4.9 Concurrent No-Colouring Implementation

We develop a Concurrent No-Colouring Implementation of Prim’s algorithm. One
processor is designated as the main processor and it grows the minimum spanning
tree of the entire graph. The other processors are designated as helper processors
and they build the minimum spanning trees of sub-graphs. The main processor
occasionally checks whether the minimum spanning trees of these sub-graphs
overlap with the growing minimum spanning tree. When overlap is detected the
sub-graphs produced by the helper processors are rolled-back to the state they
were when they were adjacent to the growing minimum spanning tree. They
are then combined with the growing minimum spanning tree and their fringes are
added to the fringe of the growing minimum spanning tree. The helper processors
contribute to reducing the elapsed time taken to calculate the minimum spanning
tree.

We use the Serial No-Colouring Implementation of Prim’s algorithm on the
main processor because it makes the merging of the sub-graphs built by the
helper processors easier. However, we could have chosen a Serial Graph Colouring
Implementation, in which case only the main processor would access the graph
colours.

The helper processors create minimum spanning trees in such a way that the
execution of their algorithm can be rolled back to a previous state. The algorithm
executing on the helper processors is also a Serial No-Colouring Implementation

of Prim’s algorithm. It uses an immutable set to identify edges in the minimum

12 CONTENTS

spanning tree and an immutable priority queue to represent the fringe. Both
of these Immutable Data Structures are specialisations of the Canonical Binary
Tree. The immutable set and the priority queue are entangled so that they can

both be rolled-back to a mutually consistent state.

The Immutable Data Structures are entangled by storing the root of the im-
mutable priority queue in the leaves of the immutable set. Each leaf contains an
edge and a reference to the root of the past version of the priority queue from
which it was removed. The leaf also contains the corresponding root of the past
version of the set. This entanglement check points the state of the algorithm
at the start of each iteration. The check point allows the set and the priority
queue to be restored to a consistent state in which the set represents a minimum

spanning tree and the priority queue its fringe.

At some moment in time the minimum spanning trees of sub-graphs built
in isolation are checked by the main processor and possibly combined with the
growing minimum spanning tree. The frequency at which the minimum spanning
trees of sub-graphs are checked is a heuristic of the algorithm which does not

affect its correctness.

If necessary, the main processor examines the set produced by a helper pro-
cessor and backtracks through past versions by traversing the leaves of the set.
The algorithm must backtrack to the moment in time when the first common
edge was added. An ordinal number is used to determine the first common edge.
Each iteration of Prim’s algorithm performed by the helper processor causes a
process-unique ordinal number to be incremented. This ordinal number is stored
in a leaf of the set. The first common edge is the common edge with the lowest

ordinal number.

The main processor does not block the execution of the helper processors
while backtracking. The data structures produced by the helper processors are
immutable and can be examined by the main processor without requiring syn-

chronisation.

When backtracking detects overlap the state of the algorithm is rolled-back
to the point at which the first common edge was added. The traversal finds
the leaf containing a common edge with the lowest ordinal number. This leaf
contains a reference to the past version of the set which represents the minimum
spanning tree of a sub-graph which is adjacent to the growing minimum spanning

tree. This leaf also contains a reference to the version of the priority queue which

4.4. MINIMUM SPANNING TREE 13

represents the fringe of the minimum spanning tree of the sub-graph.

A merge process combines the past version of the minimum spanning tree of
the sub-graph with the growing minimum spanning tree and the past version of
the fringe of the sub-graph with the fringe of the growing minimum spanning
tree. The helper processor is stopped after the merge to reduce contention in the

path to memory.

4.4.10 The performance of the Concurrent No-Colouring

Implementation

The performance of a concurrent implementation of Prim’s algorithm is depen-
dent on both the topology of the graph and the choice of starting vertices. Heuris-
tics can guide the choice of starting vertices used by the helper processors. Our
concurrent implementation chooses the starting vertices for each processor at ran-
dom. We have focused exclusively on planar graphs, so the performance of the
Concurrent No-Colouring Implementation when applied to other graph topologies
remains to be investigated.

The elapsed time taken by the Concurrent No-Colouring Implementation of
Prim’s algorithm is dependent on heuristics such as the frequency at which the
main processor checks whether the minimum spanning trees of sub-graphs, pro-
duced by the helpers, overlap with the growing minimum spanning tree. The
checking process is performed by the main processor. There is a trade off be-
tween the frequency of checking and the benefit from merging a minimum span-
ning tree produced by a helper. We found that the best results were obtained
when the main processor checked for overlap infrequently. Our implementation
adds 2! nodes to the growing minimum spanning tree between checks. There
is little chance of overlap when the minimum spanning trees are small and little
to be gained from merging sub-graphs when the growing minimum spanning tree
is near completion. Checking for overlap is probably most advantageous when
about one quarter of the planar graph is covered by the minimum spanning trees
of sub-graphs. However, we did not attempt to find the optimum interval because
it is dependent on the topology of the graph.

When processing a large graph a high proportion of memory accesses result
in cache misses. Our implementation uses only 8 hardware threads, one on each

physical processor. We found that using additional hardware threads did not

14 CONTENTS

reduce the elapsed time taken to determine the minimum spanning tree. This
indicates that the elapsed time is bound by the performance of the memory
subsystem. Jacob describes how the Niagara processor in the Sun Ultra Sparc
T2 server has four memory controllers and uses fully buffered DIMM memory to
permit fast processing for frequent cache misses [Jac09]. However, we also carried
out experiments using an Intel core i7 system. We found that for graphs of less
than 2'® vertices the elapsed time taken by the Intel system was less than that
obtained by processing the same graph on the Sun Ultra Sparc T2. The restricted

memory available on the Intel system prevented a comparison for larger graphs.

During the execution of Prim’s algorithm edges are checked for inclusion in the
minimum spanning tree before being added to the fringe. However, when fringes
are merged the resulting fringe can contain edges in common with the merged
minimum spanning trees. These edges make the fringe larger than necessary
and introduce redundant iterations of the algorithm. Periodic fringe compaction
can improve the performance of the algorithm by removing these edges from the

priority queue.

The immutable priority queue implementing the fringe can be compacted by
creating a new version which does not contain any edges in common with the
set implementing the minimum spanning tree. Compaction does not affect the
Entanglement between the data structures, it makes subsequent versions of the
priority queue smaller but it does not return memory. Our backtracking algorithm

requires that all past versions of both the priority queue and the set are retained.

We chose not to compact the fringe of the minimum spanning tree grown
by the main processor. Instead, we compact the fringes of minimum spanning
trees grown by the helper processors. The immutable priority queue is compacted
after adding 2'° nodes. We did not attempt to find the optimum interval between

fringe compactions because it is dependent on the topology of the graph.

The Sun Ultra Sparc T2 server has 32 GB of main memory. Our algorithm
does not return any memory so the size of graphs considered during the evaluation
are restrained by the available memory. There are many ways that the memory
restraint could be lifted. For example, the helper processors could return the
memory occupied by a sub-tree after it is merged with the growing minimum

spanning tree.

The size of the node used to implement the Canonical Binary Tree and the

4.4. MINIMUM SPANNING TREE 15

number of nodes accessed while balancing of the tree are important factors af-
fecting the performance of the No-Colouring Implementations because they con-
tribute to the effective memory bandwidth of the implementation.

Section 77?7 describes how node size affects the performance of algorithms which

use specialisations of the Canonical Binary Tree.

Bibliography

[AMO93]

[BHO1]

[CCE+09]

[Cha00]

[DGJe09)]

[DLMNO9]

[DT92]

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work flows: theory, algorithms, and applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1993.

Cuneyt F. Bazlamacci and Khalil S. Hindi. Minimum-weight span-
ning tree algorithms a survey and empirical study. Computers &

Operations Research, 28(8):767 — 785, 2001.

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karls-
son, Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Trem-
blay. Rock: A high-performance Sparc CMT processor. IEEE Micro,
29(2):6-16, 20009.

Bernard Chazelle. A minimum spanning tree algorithm with inverse-
ackermann type complexity. J. ACM, 47(6):1028-1047, 2000.

Camil Demetrescu, Andrew V. Goldberg, and David S. John-
son (eds.). The Shortest Path Problem: Ninth DIMACS Implemen-
tation Challenge. American Mathematical Society, 2009. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science.

Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early ex-
perience with a commercial hardware transactional memory imple-
mentation. In ASPLOS °09: Proceeding of the 1/th international
conference on Architectural support for programming languages and
operating systems, pages 157-168. ACM, March 2009.

Dorit Dor and Michael Tarsi. Graph decomposition is npc - a complete
proof of holyer’s conjecture. In STOC ’92: Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 252—
263, New York, NY, USA, 1992. ACM.

16

BIBLIOGRAPHY 17

[Jac09]

[Jos99]

[KB09)

[NMNO1]

[Pri57]

[RGO1]

[Sed02]

[SLLO1]

[VHPNOY]

Bruce L. Jacob. The Memory System: You Can’t Avoid It, You Can’t
Ignore It, You Can’t Fake It. Synthesis Lectures on Computer Archi-
tecture. Morgan & Claypool Publishers, 2009.

Nicolai M. Josuttis. The C++ Standard Library: A tutorial and ref-
erence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

Seunghwa Kang and David A. Bader. An efficient transactional

memory algorithm for computing minimum spanning forest of sparse
graphs. In PPOPP, pages 15-24, 2009.

Jaroslav Nesetiil, Eva Milkova, and Helena Nesetiilova. Otakar
Boruvka on Minimum Spanning Tree Problem, translation of both

the 1926 papers. Discrete Math., 233:3-36, April 2001.

R. C. Prim. Shortest connection networks and some generalizations.
Bell System Technology Journal, 36:1389-1401, 1957.

Ravi Rajwar and James R. Goodman. Speculative lock elision: en-
abling highly concurrent multithreaded execution. In Proceedings of
the 34th annual ACM/IEEE international symposium on Microar-
chitecture, MICRO 34, pages 294-305, Washington, DC, USA, 2001.
IEEE Computer Society.

Robert Sedgewick. Algorithms in C++, part 5: graph algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library User Guide and Reference Manual. Addison-Wesley

Professional, December 2001.

Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J.
Narayanan. Fast minimum spanning tree for large graphs on the

gpu. In Proceedings of the Conference on High Performance Graphics
2009, HPG ’09, pages 167-171, New York, NY, USA, 2009. ACM.

18 BIBLIOGRAPHY

[VRV+09] Vladimir Cakarevi¢, Petar Radojkovié, Javier Verdu, Alex Pajuelo,
Francisco J. Cazorla, Mario Nemirovsky, and Mateo Valero. Charac-
terizing the resource-sharing levels in the UltraSPARC T2 processor.
In Micro-42: Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 481-492, New York,
NY, USA, 2009. ACM.

[Wei93] Mark Allen Weiss. Data structures and algorithm analysis in C.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,
1993.

	Minimum Spanning Tree
	Experiment
	Results
	Method
	Serial Graph Colouring Implementation
	Serial No-Colouring Implementation
	The concurrent implementation of Prim's algorithm
	Concurrent Graph Colouring Implementation
	Previous work
	Concurrent No-Colouring Implementation
	The performance of the Concurrent No-Colouring Implementation

	Bibliography

