
Contents

4.4 Minimum Spanning Tree . 2

4.4.1 Experiment . 2

4.4.2 Results . 4

4.4.3 Method . 6

4.4.4 Serial Graph Colouring Implementation 7

4.4.5 Serial No-Colouring Implementation 8

4.4.6 The concurrent implementation of Prim’s algorithm 9

4.4.7 Concurrent Graph Colouring Implementation 9

4.4.8 Previous work . 10

4.4.9 Concurrent No-Colouring Implementation 11

4.4.10 The performance of the Concurrent No-Colouring Imple-

mentation . 13

Bibliography 15

1

2 CONTENTS

4.4 Minimum Spanning Tree

The problem of finding the minimum spanning tree of a graph is typical of com-

binatorial problems which exhibit fine-grained irregular parallelism. Researchers

have been frustrated in their attempts to exploit this parallelism and for many

types of graph the fastest known algorithms are serial. To evaluate our check

pointing technique we measure the performance of a concurrent implementation

of a minimum spanning tree algorithm that uses entangled Immutable Data Struc-

tures. We find that our concurrent implementation does not perform as well as

a serial implementation.

The problem is to determine the minimum spanning tree of a connected undi-

rected graph with weighted edges. The minimum spanning tree of a graph is an

acyclic sub-graph which connects all of the vertices and has the minimum weight.

Sedgewick explains the problem in detail and describes a number of serial

algorithms for computing the minimum spanning tree [Sed02]. The minimum

spanning tree problem is one of the most important in combinatorics. Ahuja

describes how many problems in network routing and linear programming are

related to the problem of finding the minimum spanning tree [AMO93].

A minimum spanning tree is the tree of edges T ∈ G(V,E) with minimal

weight:

W (T) =
∑

(u,v)∈T

W ((u, v))

where W ((u, v)) is the weight of an edge (u, v).

The main contribution of this section is the evaluation of an algorithm which

uses entangled Immutable Data Structures to facilitate the check pointing of

speculative execution. This section focuses on comparing the times taken to

determine the minimum spanning tree of an undirected planar graph.

4.4.1 Experiment

Prim describes an algorithm to determine the minimum spanning tree of a graph

[Pri57]. To evaluate our check pointing technique we compare the performance

of a concurrent implementation that uses entangled Immutable Data Structures

with a concurrent implementation that uses Software Transactional Memory. We

also compare these concurrent implementations with their serial counterparts.

4.4. MINIMUM SPANNING TREE 3

Prim’s algorithm is typically implemented using a mutable adjacency list to

represent the graph and its minimum spanning tree and a priority queue from

which minimally weighted edges are chosen. The implementation records whether

edges belong to the minimum spanning tree by storing a value, which is usually

referred to as a colour, as an edge property in the adjacency list. We call this

a Serial Graph Colouring Implementation of Prim’s algorithm. We use the ad-

jacency list and the Serial Graph Colouring Implementation of Prim’s algorithm

from the Boost graph library. Siek describes the format of the adjacency list in

detail [SLL01].

Section 4.4.3 describes the experimental set up.

Section 4.4.4 describes the Serial Graph Colouring Implementation of Prim’s

algorithm.

We develop an implementation of Prim’s algorithm that uses a set, instead of

graph colouring, to represent the minimum spanning tree. We call this a Serial

No-Colouring Implementation of Prim’s algorithm. This serial implementation is

used to measure the effect that maintaining the minimum spanning tree in a set,

rather than in the adjacency list, has on the execution time of the algorithm. We

use a data structure from the C++ standard template library to implement the set

of edges representing the minimum spanning tree and we also use a priority queue

from the standard library [Jos99]. The graph is implemented by an immutable

adjacency list from the Boost library.

Section 4.4.5 describes the Serial No-Colouring Implementation of Prim’s al-

gorithm.

A Concurrent Graph Colouring Implementation of Prim’s algorithm must

ensure the correctness of concurrent accesses to the edge colours.

Section 4.4.6 explains why a Concurrent Graph Colouring Implementation of

Prim’s algorithm that executes efficiently on a Chip Multi-Processor is difficult

to construct.

Kang developed a concurrent implementation of Prim’s algorithm using Soft-

ware Transactional Memory [KB09]. We call this a Concurrent Graph Colouring

Implementation of Prim’s algorithm. The implementation allows some specula-

tive execution by lazily detecting conflicting accesses to the graph colours.

Section 4.4.7 describes Kang’s Concurrent Graph Colouring Implementation

of Prim’s algorithm.

4 CONTENTS

We develop a concurrent implementation of Prim’s algorithm which uses en-

tangled Immutable Data Structure to allow check pointing, backtracking and roll-

back to a previous state of the algorithm. We call this a Concurrent No-Colouring

Implementation of Prim’s algorithm. The implementation uses an immutable set,

to represent the minimum spanning tree, and an immutable priority queue, from

which minimally weighted edges are chosen. Both of these data structure are spe-

cialisations of the Canonical Binary Tree. The data structures are entangled to

facilitate check pointing. The graph is implemented by an immutable adjacency

list from the Boost library.

Section 4.4.9 describes the Concurrent No-Colouring Implementation of Prim’s

algorithm.

4.4.2 Results

Our experiment shows that the Concurrent No-Colouring Implementation of

Prim’s algorithm takes longer to determine the minimum spanning tree of a graph

than either the Serial Graph Colouring Implementation or the Serial No-Colouring

Implementation for all graph sizes. The Serial No-Colouring Implementation of

the algorithm takes about twice as long as the Serial Graph Colouring Implemen-

tation for all graph sizes.

Figure 4.1 illustrates a comparison of the elapsed time taken to determine the

minimum spanning tree of a graph.

The Concurrent No-Colouring Implementation does not return the memory

used by the Immutable Data Structures because they are persistent. Only 32 GB

of memory are available to contain the persistent data structures on the evalua-

tion hardware and this limited the maximum size of the graph whose minimum

spanning tree could be determined to 219 vertices.

The topology of the graphs representing the road maps of urban states differs

from those of more rural states. This accounts for some of the variation in elapsed

time taken to calculate the minimum spanning tree of states with similar numbers

of vertices.

This thesis does not make any claims about the absolute performance of Im-

mutable Data Structures. However, even when using 8 hardware threads the

Concurrent No-Colouring Implementation takes longer to calculate the minimum

spanning tree than either serial algorithm.

Section 4.4.10 describes how the performance of the Concurrent No-Colouring

4.4. MINIMUM SPANNING TREE 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

14 15 16 17 18 19 20

E
la

p
s
e
d
 t
im

e
 (

s
e
c
o

n
d

s
)

log2(Number of vertices)

Figure 4.1: Comparison of the elapsed time taken to calculate the mini-
mum spanning tree of planar undirected graphs representing road maps of US
states.
The elapsed time taken by the Serial Graph Colouring Implementation (+), the
Serial No-Colouring Implementation (x) and the Concurrent No-Colouring Im-
plementation (*) is plotted against varying graph sizes. We uses a log scale to
represent the number of vertices in the graph.
Eight hardware threads participate in the concurrent execution. Each hardware
thread executes on a dedicated processor. Figures given are the mean of 10
measurements.

6 CONTENTS

Implementation can be improved.

Kang provided results for a Concurrent Graph Colouring Implementation

which uses Software Transactional Memory [KB09]. Kang measured the elapsed

time taken to calculate the minimum spanning tree of a planar graph with 222

edges. Unfortunately, we were not able to calculate the minimum spanning tree

of a graph of this size so we cannot make a direct comparison with Kang’s result.

When a single hardware thread was used the elapsed time taken to determine

the minimum spanning tree was 1143 seconds. When using 8 hardware threads,

on the same core, a 14X speed-up was achieved. Kang attributed this super-

linear speed-up to the sharing of cache by the hardware threads. When using 64

hardware threads, on 8 cores, a speed-up of 61.5X was achieved.

Kang attributed 98.5% of the execution time of the Concurrent Graph Colour-

ing Implementation to the overhead of Software Transactional Memory. To over-

come this overhead 64 hardware threads were applied to the problem. Kang

concluded that “even with this level of scalability, our parallel algorithm runs

only at the comparable speed to the single-threaded case which does not incur

the Software Transactional Memory overhead” [KB09].

This thesis claims that the use of Immutable Data Structures can make con-

current programming easier. Kang described the difficulty of ensuring the cor-

rectness of the Concurrent Graph Colouring Implementation which uses locks to

ensure serialisable access to the graph colours “this [acquiring locks] can lead to

many complex scenarios that can cause race conditions, deadlocks, or other com-

plications, and it is far from trivial to write correct and scalable code” [KB09].

Our Concurrent No-Colouring Implementation of Prim’s algorithm requires no

synchronisation. It is not prone to race conditions, because all shared data is

immutable and it is not prone to deadlock because it does not block. Our Con-

current No-Colouring Implementation of Prim’s algorithm was simpler to develop

than the Concurrent Graph Colouring Implementation described by Kang.

4.4.3 Method

Demetrescu describes a set of planar graphs, representing road maps, which were

used during the DIMACS implementation challenge competition [DGJe09]. These

graphs are widely accepted as benchmarks for evaluating minimum spanning tree

algorithms. Each graph node represents an intersection between roads and each

graph edge is weighted with the distance between intersections. The graphs have

4.4. MINIMUM SPANNING TREE 7

an average of 2.7 edges per vertex.

We evaluate our algorithm using a Sun Ultra Sparc T2 server [vRV+09]. The

server contains a single Niagara Chip Multi-Processor which implements simul-

taneous multi-threading, it has 64 hardware threads and 8 physical processors.

Both the hardware and the graph data sets used in our evaluation are identical

to those used by Kang [KB09].

We use an immutable priority queue implemented by a Directed min-tree spe-

cialisation of the Canonical Binary Tree. The Canonical Binary Tree is balanced

but none of the optimisations, suggested in section ?? are implemented. We

also use an immutable set implemented by an interval tree specialisation of the

Canonical Binary Tree.

4.4.4 Serial Graph Colouring Implementation

Prim’s algorithm is based on an observation known as the graph cut property

[Pri57]. A graph cut partitions the vertices of a graph into two disjoint sets.

Given a cut in the graph, any edge between the two sets which has a minimum

weight belongs to some minimum spanning tree of the graph.

Prim’s algorithm grows a minimum spanning tree iteratively from a single

graph edge. The algorithm maintains a set of crossing edges, called the fringe,

which is the set of edges with one vertex in the growing minimum spanning tree

and one outside it.

Initially, both the minimum spanning tree and the fringe are empty. A single

vertex is added to the minimum spanning tree and all of the edges from this

vertex are added to the fringe. At each iteration the minimally weighted edge is

removed from the fringe and added to the growing minimum spanning tree. This

adds a new vertex to the minimum spanning tree and all of the edges from this

vertex to vertices that are not already in the minimum spanning tree are then

added to the fringe. The resulting fringe is processed by the next iteration. The

algorithm completes when the set of vertices outside the minimum spanning tree

is empty and edges in the minimum spanning tree connect all of the nodes in the

graph.

Prim’s algorithm can be implemented by using an adjacency list to represent

the graph. Each graph edge has an associated weight. The minimum spanning

tree is represented by a colour indicator associated with each edge. The fringe is

represented by a priority queue which contains references to edges in the adjacency

8 CONTENTS

list. The priority associated with an edge is the weight of that edge.

Serial Graph Colouring Implementations of Prim’s algorithm are among the

fastest known. Typically, high performance Serial Graph Colouring Implementa-

tions focus on improving the performance of the priority queue.

4.4.5 Serial No-Colouring Implementation

Prim’s algorithm can also be implemented by using a set to maintain the grow-

ing minimum spanning tree instead of colouring graph edges. We call such an

implementation a Serial No-Colouring Implementation because the adjacency list

does not have any mutable properties. The set contains references to edges in the

adjacency list and is used to determine whether an edge is part of the minimum

spanning tree.

The Serial No-Colouring Implementation of Prim’s algorithm uses three data

structures. The graph is represented by a constant adjacency list with weighted

edges. The fringe is represented by a priority queue which orders edges by weight.

The minimum spanning tree is represented by a set of edges. In our implementa-

tion the priority queue is implemented using a vector from the standard library

and the set is implemented using the standard map [Jos99].

The algorithm starts from a single node and adds edges to the minimum

spanning tree iteratively. The edge with the minimum weight is removed from

the priority queue and added to the set to indicate that it is part of the minimum

spanning tree. This adds a new vertex to the minimum spanning tree. The edges

including this vertex, which are not already present in the set, are added to the

priority queue to complete the iteration.

To determine whether an edge is part of the minimum spanning tree a set

look-up is performed. Typically, set look-up takes O(log(n)) time whereas ac-

cessing a mutable graph edge takes O(1) time, so there is a significant overhead

associated with looking up edges in a set. Consequently, it is not common to

implement Prim’s algorithm in this way. Our Concurrent No-Colouring Imple-

mentation maintains the minimum spanning tree an immutable set and uses a

constant adjacency list to avoid sharing mutable data. We implement the Se-

rial No-Colouring Implementation algorithm so that we can measure the effect of

maintaining the growing minimum spanning tree in a set.

4.4. MINIMUM SPANNING TREE 9

4.4.6 The concurrent implementation of Prim’s algorithm

A concurrent implementation of Prim’s algorithm may attempt to combine the

minimum spanning trees of sub-graphs, produced by multiple processors, to form

a larger minimum spanning tree.

Two sub-graphs are disjoint if they do not have any vertices in common. Two

sub-graphs are adjacent if they are disjoint and there is at least one edge joining

vertices which belong to different sub-graphs. The minimum spanning trees of

adjacent sub-graphs can be combined by including the minimally weighted joining

edge in the graph formed by their union. The minimum spanning trees of disjoint

sub-graphs can be combined easily only by growing them until they are adjacent.

The minimum spanning trees of overlapping sub-graphs are difficult to combine.

Ideally, the minimum spanning trees of adjacent sub-graphs should be identified

and combined.

The graph cannot be decomposed into disjoint sub-graphs before the algorithm

starts because this problem is more difficult than the minimum spanning tree

problem itself. Dor proves that the problem of decomposing a graph into disjoint

sub-graphs with no common edges is NP-Complete [DT92].

To permit the combination of minimum spanning trees created concurrently

an algorithm can check that their sub-graphs are disjoint each time a vertex is

added. This imposes a synchronisation overhead on the concurrent implementa-

tion. The implementation can speculate that sub-graphs are disjoint to reduce

the synchronisation overhead. However, it must be prepared to roll-back the

algorithm to the point at which adjacency first occurs.

A concurrent algorithm has the potential to demonstrate speed-up provided it

is faster to check and combine the minimum spanning tree of sub-graphs with the

growing minimum spanning tree than to grow the minimum spanning tree by the

corresponding amount. Once checked, the merging of minimum spanning trees

is straightforward. The problem is to create minimum spanning trees in such a

way that they can be combined without incurring a significant synchronisation

overhead.

10 CONTENTS

4.4.7 Concurrent Graph Colouring Implementation

Kang describes a Concurrent Graph Colouring Implementation of Prim’s algo-

rithm which uses Software Transactional Memory [KB09]. Kang’s implementa-

tion is an application which implements Memory Transactions rather than an

application developed within an existing Software Transactional Memory frame-

work.

Memory operations acting on the graph colours can cause race conditions,

so simultaneous access must be restricted. A näıve implementation might seri-

alise every access to the colours but this effectively serialises the entire algorithm,

negating any benefit from concurrent execution. Kang uses Software Transac-

tional Memory to support speculation by buffering memory operations and de-

tecting conflicts. Conflicting accesses to the graph colours are rare so it can be

beneficial to speculate that a conflict did not occur.

Kang’s Concurrent Graph Colouring Implementation relies on the semantics

of memory transactions to avoid data races. Each thread colours the vertices

of its own minimum spanning tree and also colours all of the neighbours of the

marked vertices with a unique colour. The process of picking one vertex and then

applying an operation to its neighbours is encapsulated in a Memory Transaction.

Conflicts are detected by checking the colour of vertices in graph to determine

whether another processor has included the node in its minimum spanning tree.

Our experimental results are directly comparable to those of Kang because we

use identical graph data sets and identical hardware. Unfortunately, Kang was

not able to report concurrent speed-up because the overheads associated with

Software Transactional Memory exceed the benefits of concurrent execution.

4.4.8 Previous work

Bor̊uvka described a concurrent algorithm to determine the minimum spanning

tree of a graph nearly a century ago [NMN01]. However, realising speed-up from

concurrent execution has proved difficult. Chazelle describes an algorithm which

has the minimal amortised time [Cha00]. Vineet describes an algorithm that

makes use of a graphics processing unit. This speeds-up the calculation of some

very large minimum spanning trees by an order of magnitude when compared with

a serial implementation [VHPN09]. In practice, the fastest methods for finding

the minimum spanning tree of a dense graph are based on a serial implementation

4.4. MINIMUM SPANNING TREE 11

of Prim’s algorithm. Bazlamacci presents a survey of high performance minimum

spanning tree algorithms [BH01]. In the fastest, the fringe is represented by a

priority queue based on a Fibonacci heap. Weiss describes the implementation

of a Fibonacci heap data structure in detail [Wei93].

Dice describes a Concurrent Graph Colouring Implementation of Prim’s algo-

rithm which uses Hardware Transactional Memory [DLMN09]. Dice uses a form

of Hardware Transactional Memory known as speculative lock elision, which per-

mits speculative access to the graph colours, while relying on hardware to detect

conflicting accesses [RG01]. Dice implements this algorithm on the Sun ROCK

processor [CCE+09]. The implementation difficulty and the modest speed-up

observed may have been factors contributing the cancellation of the ROCK pro-

cessor, which we described in section ??.

4.4.9 Concurrent No-Colouring Implementation

We develop a Concurrent No-Colouring Implementation of Prim’s algorithm. One

processor is designated as the main processor and it grows the minimum spanning

tree of the entire graph. The other processors are designated as helper processors

and they build the minimum spanning trees of sub-graphs. The main processor

occasionally checks whether the minimum spanning trees of these sub-graphs

overlap with the growing minimum spanning tree. When overlap is detected the

sub-graphs produced by the helper processors are rolled-back to the state they

were when they were adjacent to the growing minimum spanning tree. They

are then combined with the growing minimum spanning tree and their fringes are

added to the fringe of the growing minimum spanning tree. The helper processors

contribute to reducing the elapsed time taken to calculate the minimum spanning

tree.

We use the Serial No-Colouring Implementation of Prim’s algorithm on the

main processor because it makes the merging of the sub-graphs built by the

helper processors easier. However, we could have chosen a Serial Graph Colouring

Implementation, in which case only the main processor would access the graph

colours.

The helper processors create minimum spanning trees in such a way that the

execution of their algorithm can be rolled back to a previous state. The algorithm

executing on the helper processors is also a Serial No-Colouring Implementation

of Prim’s algorithm. It uses an immutable set to identify edges in the minimum

12 CONTENTS

spanning tree and an immutable priority queue to represent the fringe. Both

of these Immutable Data Structures are specialisations of the Canonical Binary

Tree. The immutable set and the priority queue are entangled so that they can

both be rolled-back to a mutually consistent state.

The Immutable Data Structures are entangled by storing the root of the im-

mutable priority queue in the leaves of the immutable set. Each leaf contains an

edge and a reference to the root of the past version of the priority queue from

which it was removed. The leaf also contains the corresponding root of the past

version of the set. This entanglement check points the state of the algorithm

at the start of each iteration. The check point allows the set and the priority

queue to be restored to a consistent state in which the set represents a minimum

spanning tree and the priority queue its fringe.

At some moment in time the minimum spanning trees of sub-graphs built

in isolation are checked by the main processor and possibly combined with the

growing minimum spanning tree. The frequency at which the minimum spanning

trees of sub-graphs are checked is a heuristic of the algorithm which does not

affect its correctness.

If necessary, the main processor examines the set produced by a helper pro-

cessor and backtracks through past versions by traversing the leaves of the set.

The algorithm must backtrack to the moment in time when the first common

edge was added. An ordinal number is used to determine the first common edge.

Each iteration of Prim’s algorithm performed by the helper processor causes a

process-unique ordinal number to be incremented. This ordinal number is stored

in a leaf of the set. The first common edge is the common edge with the lowest

ordinal number.

The main processor does not block the execution of the helper processors

while backtracking. The data structures produced by the helper processors are

immutable and can be examined by the main processor without requiring syn-

chronisation.

When backtracking detects overlap the state of the algorithm is rolled-back

to the point at which the first common edge was added. The traversal finds

the leaf containing a common edge with the lowest ordinal number. This leaf

contains a reference to the past version of the set which represents the minimum

spanning tree of a sub-graph which is adjacent to the growing minimum spanning

tree. This leaf also contains a reference to the version of the priority queue which

4.4. MINIMUM SPANNING TREE 13

represents the fringe of the minimum spanning tree of the sub-graph.

A merge process combines the past version of the minimum spanning tree of

the sub-graph with the growing minimum spanning tree and the past version of

the fringe of the sub-graph with the fringe of the growing minimum spanning

tree. The helper processor is stopped after the merge to reduce contention in the

path to memory.

4.4.10 The performance of the Concurrent No-Colouring

Implementation

The performance of a concurrent implementation of Prim’s algorithm is depen-

dent on both the topology of the graph and the choice of starting vertices. Heuris-

tics can guide the choice of starting vertices used by the helper processors. Our

concurrent implementation chooses the starting vertices for each processor at ran-

dom. We have focused exclusively on planar graphs, so the performance of the

Concurrent No-Colouring Implementation when applied to other graph topologies

remains to be investigated.

The elapsed time taken by the Concurrent No-Colouring Implementation of

Prim’s algorithm is dependent on heuristics such as the frequency at which the

main processor checks whether the minimum spanning trees of sub-graphs, pro-

duced by the helpers, overlap with the growing minimum spanning tree. The

checking process is performed by the main processor. There is a trade off be-

tween the frequency of checking and the benefit from merging a minimum span-

ning tree produced by a helper. We found that the best results were obtained

when the main processor checked for overlap infrequently. Our implementation

adds 210 nodes to the growing minimum spanning tree between checks. There

is little chance of overlap when the minimum spanning trees are small and little

to be gained from merging sub-graphs when the growing minimum spanning tree

is near completion. Checking for overlap is probably most advantageous when

about one quarter of the planar graph is covered by the minimum spanning trees

of sub-graphs. However, we did not attempt to find the optimum interval because

it is dependent on the topology of the graph.

When processing a large graph a high proportion of memory accesses result

in cache misses. Our implementation uses only 8 hardware threads, one on each

physical processor. We found that using additional hardware threads did not

14 CONTENTS

reduce the elapsed time taken to determine the minimum spanning tree. This

indicates that the elapsed time is bound by the performance of the memory

subsystem. Jacob describes how the Niagara processor in the Sun Ultra Sparc

T2 server has four memory controllers and uses fully buffered DIMM memory to

permit fast processing for frequent cache misses [Jac09]. However, we also carried

out experiments using an Intel core i7 system. We found that for graphs of less

than 218 vertices the elapsed time taken by the Intel system was less than that

obtained by processing the same graph on the Sun Ultra Sparc T2. The restricted

memory available on the Intel system prevented a comparison for larger graphs.

During the execution of Prim’s algorithm edges are checked for inclusion in the

minimum spanning tree before being added to the fringe. However, when fringes

are merged the resulting fringe can contain edges in common with the merged

minimum spanning trees. These edges make the fringe larger than necessary

and introduce redundant iterations of the algorithm. Periodic fringe compaction

can improve the performance of the algorithm by removing these edges from the

priority queue.

The immutable priority queue implementing the fringe can be compacted by

creating a new version which does not contain any edges in common with the

set implementing the minimum spanning tree. Compaction does not affect the

Entanglement between the data structures, it makes subsequent versions of the

priority queue smaller but it does not return memory. Our backtracking algorithm

requires that all past versions of both the priority queue and the set are retained.

We chose not to compact the fringe of the minimum spanning tree grown

by the main processor. Instead, we compact the fringes of minimum spanning

trees grown by the helper processors. The immutable priority queue is compacted

after adding 210 nodes. We did not attempt to find the optimum interval between

fringe compactions because it is dependent on the topology of the graph.

The Sun Ultra Sparc T2 server has 32 GB of main memory. Our algorithm

does not return any memory so the size of graphs considered during the evaluation

are restrained by the available memory. There are many ways that the memory

restraint could be lifted. For example, the helper processors could return the

memory occupied by a sub-tree after it is merged with the growing minimum

spanning tree.

The size of the node used to implement the Canonical Binary Tree and the

4.4. MINIMUM SPANNING TREE 15

number of nodes accessed while balancing of the tree are important factors af-

fecting the performance of the No-Colouring Implementations because they con-

tribute to the effective memory bandwidth of the implementation.

Section ?? describes how node size affects the performance of algorithms which

use specialisations of the Canonical Binary Tree.

Bibliography

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-

work flows: theory, algorithms, and applications. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1993.

[BH01] Cuneyt F. Bazlamacci and Khalil S. Hindi. Minimum-weight span-

ning tree algorithms a survey and empirical study. Computers &

Operations Research, 28(8):767 – 785, 2001.

[CCE+09] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karls-

son, Anders Landin, Sherman Yip, H̊akan Zeffer, and Marc Trem-

blay. Rock: A high-performance Sparc CMT processor. IEEE Micro,

29(2):6–16, 2009.

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-

ackermann type complexity. J. ACM, 47(6):1028–1047, 2000.

[DGJe09] Camil Demetrescu, Andrew V. Goldberg, and David S. John-

son (eds.). The Shortest Path Problem: Ninth DIMACS Implemen-

tation Challenge. American Mathematical Society, 2009. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science.

[DLMN09] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early ex-

perience with a commercial hardware transactional memory imple-

mentation. In ASPLOS ’09: Proceeding of the 14th international

conference on Architectural support for programming languages and

operating systems, pages 157–168. ACM, March 2009.

[DT92] Dorit Dor and Michael Tarsi. Graph decomposition is npc - a complete

proof of holyer’s conjecture. In STOC ’92: Proceedings of the twenty-

fourth annual ACM symposium on Theory of computing, pages 252–

263, New York, NY, USA, 1992. ACM.

16

BIBLIOGRAPHY 17

[Jac09] Bruce L. Jacob. The Memory System: You Can’t Avoid It, You Can’t

Ignore It, You Can’t Fake It. Synthesis Lectures on Computer Archi-

tecture. Morgan & Claypool Publishers, 2009.

[Jos99] Nicolai M. Josuttis. The C++ Standard Library: A tutorial and ref-

erence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1999.

[KB09] Seunghwa Kang and David A. Bader. An efficient transactional

memory algorithm for computing minimum spanning forest of sparse

graphs. In PPOPP, pages 15–24, 2009.

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar

Bor̊uvka on Minimum Spanning Tree Problem, translation of both

the 1926 papers. Discrete Math., 233:3–36, April 2001.

[Pri57] R. C. Prim. Shortest connection networks and some generalizations.

Bell System Technology Journal, 36:1389–1401, 1957.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: en-

abling highly concurrent multithreaded execution. In Proceedings of

the 34th annual ACM/IEEE international symposium on Microar-

chitecture, MICRO 34, pages 294–305, Washington, DC, USA, 2001.

IEEE Computer Society.

[Sed02] Robert Sedgewick. Algorithms in C++, part 5: graph algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002.

[SLL01] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost

Graph Library User Guide and Reference Manual. Addison-Wesley

Professional, December 2001.

[VHPN09] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J.

Narayanan. Fast minimum spanning tree for large graphs on the

gpu. In Proceedings of the Conference on High Performance Graphics

2009, HPG ’09, pages 167–171, New York, NY, USA, 2009. ACM.

18 BIBLIOGRAPHY

[vRV+09] Vladimir Čakarević, Petar Radojković, Javier Verdú, Alex Pajuelo,

Francisco J. Cazorla, Mario Nemirovsky, and Mateo Valero. Charac-

terizing the resource-sharing levels in the UltraSPARC T2 processor.

In Micro-42: Proceedings of the 42nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 481–492, New York,

NY, USA, 2009. ACM.

[Wei93] Mark Allen Weiss. Data structures and algorithm analysis in C.

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,

1993.

	Minimum Spanning Tree
	Experiment
	Results
	Method
	Serial Graph Colouring Implementation
	Serial No-Colouring Implementation
	The concurrent implementation of Prim's algorithm
	Concurrent Graph Colouring Implementation
	Previous work
	Concurrent No-Colouring Implementation
	The performance of the Concurrent No-Colouring Implementation

	Bibliography

