
Contents

6.2 Non-blocking Algorithms . 2

6.2.1 Ensuring serialisability without blocking 2

6.2.2 Lock-free serialisability . 3

6.2.3 Previous work . 5

6.2.4 Non-blocking evaluation 6

Bibliography 10

1

2 CONTENTS

6.2 Non-blocking Algorithms

The construction of non-blocking algorithms is a challenging programming task.

Non-blocking algorithms are scalable because they permit simultaneous access

to a data structure and they offer strong progress guarantees without requiring

centralised contention management. This section describes a simple technique

for constructing non-blocking algorithms. Non-blocking functions acting on Im-

mutable Data Structures are the foundation on which scalable concurrent pro-

grams can be built.

Non-blocking algorithms are scalable and relieve the programmer from having

to reason about locks. A concurrent system in which semantically linearizable

functions act concurrently on an Immutable Data Structure can guarantee lock-

free progress. In order to simplify the construction of non-blocking algorithms

concurrent systems should also ensure that serialisable functions guarantee lock-

free progress.

The main contribution of this section is a general technique for implementing

non-blocking algorithms. This section focuses on allowing simultaneous access to

Immutable Data Structures.

6.2.1 Ensuring serialisability without blocking

The enforcement of serialisability is more involved than the enforcement of lin-

earizability because conflict detection is performed by a function instead of an

atomic hardware instruction.

Semantic linearizability is enforced by recording the value of the root of the

Immutable Data Structure at the start of the execution of an access function and

checking that its value has not changed before atomically replacing the root at

the end of the execution. This replacement relies on an atomic compare-and-

swap instruction which serialises access to the root and implements a memory

barrier that ensures that the speculative path is atomically transformed into a

new shared version of the data structure.

Semantic linearizability is lock-free because it guarantees that when the pro-

gram runs for sufficiently long at least one function makes progress. An access

function can be prevented from completing only if the value of the root changes

whilst it is executing. However, if the value of the root changed then another

function successfully completed so at least one function made progress.

6.2. NON-BLOCKING ALGORITHMS 3

Semantic linearizability does not achieve the stronger condition of wait-freedom.

An algorithm is wait-free if every operation eventually completes. An access func-

tion can be prevented from completing if the value of the root changed whilst it

was executing. The function can be re-tried indefinitely but there is no guarantee

that it will eventually succeed.

The serialisability of simultaneous accesses to an Immutable Data Structure

is enforced by a validate function that implements the Time Stamp Ordering

concurrency control protocol and a meld function that can combine two version

of the data structure making it confluently persistent. The validate and meld

functions do not take place instantaneously so the access function checks that

no conflicting accesses occurred while they were executing. It also checks that

no accesses complete successfully while the validation and meld functions are

executing. The problem is to combine these actions in a way that guarantees

progress.

6.2.2 Lock-free serialisability

An access function of an Immutable Data Structure includes both validate and

meld functions which implement a simple distributed transaction manager. This

transaction manager combines two forms of speculation. The first speculation

is that the access function does not conflict with any functions accessing the

data structure simultaneously. The second speculation is that the root of the

Immutable Data Structure does not change while the validate and meld functions

take place.

Figure 6.1 illustrates the execution of an access function in the presence of

concurrent mutations.

An Immutable Data Structure access function records the value of the root of

the Immutable Data Structure at the moment in time that it starts. This refer-

ence represents the starting version of the data structure. The function is applied

to this starting version to produce a path in isolation. The function records the

value of the root of the Immutable Data Structure at the moment in time that it

completes the path, we call this version the first snapshot. This reference repre-

sents a version of the data structure which might have been arbitrarily mutated

by concurrently executing functions. The validation function ensures that the

execution of the function and the first mutation do not contain conflicting op-

erations. The meld function combines the path with the first snapshot version

4 CONTENTS

Access
Function

First
Mutation

Second
Mutation

Starting

Function

Starting

Path

Function

Validate
Meld

Putative

Replace
CAS

Final

Path

Validate
Meld

Putative

Replace
CAS

First
snapshot

Snapshot

Snapshot

Starting

Function

Path

Validate
Meld

Putative

Replace
CAS

Second
snapshot

Snapshot

Snapshot

Figure 6.1: The execution of an access function in the presence of con-
current mutations. Each operation takes a version of the data structure, repre-
sented by an ellipse, as its argument and produces a new version. The operations
executed by another processor are shaded.
The first mutation may successfully complete, while the access function is exe-
cuting, creating the first snapshot version. If so, the path created by the access
function is validated against this snapshot version and melded with it to create a
putative path. A second mutation may complete, while this validation is taking
place, creating the second snapshot version.

6.2. NON-BLOCKING ALGORITHMS 5

to produce a putative version of the data structure. Both the validate and meld

functions execute in isolation, their only inputs are the path and the first snap-

shot version. An atomic compare-and-swap instruction replaces the root with the

putative version if and only if the root has the same value as the first snapshot.

An Immutable Data Structure access function completes successfully if and

only if both speculations are successful. The first speculation is that the access

function does not conflict with the first mutation. The second speculation is that

the second mutation does not complete successfully in the period between the

first and second snapshot. In the first case a conflict is detected after the first

mutation successfully modified the root which implies that the first mutation

made progress. In the second case the value of the root only changes after the

second mutation successfully modified it which implies that the second mutation

made progress. Either the function or one of the mutations makes progress in

each case. The execution is lock-free because it guarantees that when a program

runs for sufficiently long at least one processor makes progress.

6.2.3 Previous work

Herlihy describes the state of research into non-blocking algorithms in a book

entitled ‘The art of multiprocessor programming’ [HS08].

Non-blocking algorithms which access mutable values are complex, difficult

to reason about and are usually regarded as the domain of expert programmers.

Given an ADT there is no general technique for constructing a non-blocking

algorithm that conforms to it.

A particularly difficult problem, the ABA problem, contributes significant

complexity to the implementation of non-blocking algorithms. Fraser describes

the ABA problem which is a pathology of the atomic compare-and-swap instruc-

tion which occurs when addresses are re-used [FH07]. The implementation of a

non-blocking algorithm is simplified by ensuring that all the data it acts upon is

immutable and that addresses are not re-used. The immutability of the vertices

of an Immutable Data Structure ensures that the root cannot be assigned the

same value more than once so the ABA problem cannot occur.

An atomic compare-and-swap instruction cannot modify two non-contiguous

locations so non-blocking data structures with cycles, such as doubly linked lists,

are difficult to construct. The ADTs presented by non-blocking algorithms are

often similar to those presented by purely functional data structures which are

6 CONTENTS

11 : f(f(q,r),f(f(s,t),f(u,v)))

3 : f(q,r) 10 : f(f(s,t),f(u,v))

1 : q 2 : r 6 : f(s,t) 9 : f(u,v)

4 : s 5 : t 7 : u 8 : v

Figure 6.2: The abstract syntax tree of an expression in which each value
is associated with a tag number. The expression is f(f(q, r), f(f(s, t), f(u, v))).

also single pointer structures.

Goetz examines the performance of the non-blocking algorithms included in

java.util.concurrent library [GBB+06].

Allemany found that many non-blocking algorithms perform badly on Chip

Multi-Processors [AF92]. This poor performance can be attributed to the use of

the atomic compare-and-swap instruction which may take thousands of clock cy-

cles to complete. Hennessy provides an introduction to the complex performance

issues surrounding the use of the atomic compare-and-swap instruction [HP06].

Non-blocking routines which use the atomic compare-and-swap instruction spar-

ingly can perform very well.

6.2.4 Non-blocking evaluation

Non-blocking algorithms based on immutable data are more flexible than those

based on mutable data. The following example illustrates how a non-blocking

algorithm can be used to load-balance the evaluation of an arbitrary expression

on multiple processors. This problem is introduced in section ??.

The expression f(f(q, r), f(f(s, t), f(u, v))) can be described by an abstract

syntax tree. The problem is to load balance the evaluation of the expression

between processors. It is difficult to scheduler the concurrent execution of this

expression because the execution time of each function is not known. A solution

is to dynamically schedule the execution of functions as their arguments become

available.

6.2. NON-BLOCKING ALGORITHMS 7

Figure 6.2 illustrates the abstract syntax tree of the expression.

The evaluation may be dynamically load-balanced by recording intermediate

values in an Immutable Data Structure. Initially, the data structure contains only

the arguments of the expression. The final version contains all of the arguments

and intermediate values as well as the result. The data structure maintains an

immutable record of the evaluation of the expression.

Figure 6.3 illustrates the initial and final versions of an Immutable Data Struc-

ture which represents the evaluation of the expression.

Figure 6.4 illustrates the non-blocking evaluation of the expression by multiple

processors.

In the illustration, each function’s arguments are available in the version of

the Immutable Data Structure that it starts with. If the function is unable to

find its arguments in the Immutable Data Structure then it is re-started with a

new version. Eventually, all of the functions in the expression complete and the

value of the expression can be obtained from the Immutable Data Structure.

8 CONTENTS

V0 Evaluation

2

*

V5

6

*

1

2

5

*

1

q

2

r

4

5

7

*

4

s

5

t

7

u

8

*

8

v

*

3

6

9

*

2

3

5

6

7

9

10

*

1

2
3

f(q,r)

4

5
6

f(s,t)

8

9
10

f(f(s,t),f(u,v))

11

*

9

f(u,v)

11

f(f(q,r),f(f(s,t),f(u,v)))

Figure 6.3: An Immutable Data Structure representing the evaluation
of an expression. The Immutable Data Structure representing the evaluation
of the expression f(f(q, r), f(f(s, t), f(u, v))) is an interval tree, with a sentinel,
which maps the tag number of a value in the abstract syntax tree to a leaf. The
Immutable Data Structure contains all of the arguments and intermediate values
as well as the result. Only the initial and final versions of the Immutable Data
Structure are shown. The final version is shaded.

6.2. NON-BLOCKING ALGORITHMS 9

V0

9 : f(u,v)

Validate
Meld

6 : f(s,t)V1

Validate
Meld

3 : f(q,r) V2

Validate
Meld

10 : f(f(s,t),f(u,v))V3

Validate
Meld

V4

11 : f((q,r),f(f(s,t),f(u,v)))

Validate
Meld

V5

Figure 6.4: The non-blocking evaluation of the expression
f(f(q, r), f(f(s, t), f(u, v))) by multiple processors load-balances the work
between them. Each operation takes a version of the data structure, represented
by an ellipse, as its argument and produces a new version. The operations
executed by another processor are shaded. Only validation against the first
snapshot version is show.

Bibliography

[AF92] Juan Allemany and Ed Felten. Performance issues in non-blocking

synchronization on shared-memory multiprocessors. In Proceedings of

the 11th ACM Symposium on Principles of Distributed Computing,

pages 125–134. ACM Press, August 1992.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without locks.

ACM Trans. Comput. Syst., 25, May 2007.

[GBB+06] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David

Holmes, and Tim Peierls. Java Concurrency in Practice. Addison-

Wesley Longman, Amsterdam, 2006.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2006.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2008.

10

	Non-blocking Algorithms
	Ensuring serialisability without blocking
	Lock-free serialisability
	Previous work
	Non-blocking evaluation

	Bibliography

