Contents

2.2 Parallelism 2
2.2.1 Temporal Uncertainty 2

2.2.2 Minimising Temporal Uncertainty 4

2.2.3 Functional Dependencies 5)

2.2.4 Mutable Shared State 6

2.2.5 Coordinating Concurrent Actions 7

2.2.6 Previouswork 7

2.2.7 Parallel Execution of Functional Programs 8

2.2.8 Speculative Execution of Functional Programs 9
Bibliography 11

2 CONTENTS

2.2 Parallelism

It is difficult to express an algorithm, within an existing imperative program, in
such a way that a computer can execute it concurrently. The key to making this
easier is to remove the concept of shared mutable state from both the expression
of the program and its execution. This can be achieved by incorporating pure
functions and immutable data into the imperative programming paradigm. This
relieves the programmer of having to reason about dependencies and coordinate
concurrent execution.

Software is becoming more and more complex. Much of this complexity is
incidental, arising from the way problems are solved, rather than the problems
themselves. Unfortunately, the mechanisms required to utilise the concurrency af-
forded by Chip Multi-Processors introduce even more incidental complexity. The
functional programming and transactional programming paradigms offer ways to
reduce the incidental complexity arising from the utilisation of concurrent execu-
tion.

The main contribution of this section is to identify concepts fundamental to
the support of concurrent programming within the functional and transactional
programming paradigms. This section focuses on combining the concepts of pure
functions and immutable data within the context of an existing imperative pro-

gramming language.

2.2.1 Temporal Uncertainty

The imperative programming paradigm does not offer a satisfactory solution to
the problem of coordinating the concurrent actions of multiple processors as it
relies on the, essentially serial, concepts of impure functions and mutable state.

For many organisations the investment in existing software is too large to con-
template entirely re-writing working programs just to gain a performance benefit
from concurrency. Only a small region of a program benefits from concurrent exe-
cution. Finding a way to support the concurrent execution of performance-critical
regions of existing imperative programs is of great commercial importance.

This thesis focuses on the problem of expressing concurrency, within an ex-
isting imperative program, in such a way that a Chip Multi-Processor can obtain
speed-up from concurrent execution. Our approach is to combine aspects of

functional programming and transactional programming within the imperative

2.2. PARALLELISM 3

programming paradigm.

The aim is to reduce the incidental complexity introduced into an algorithm
when it is expressed in such a way that it can execute concurrently on a Chip
Multi-Processor. This incidental complexity is not restricted to the additional
code required to allow a routine to execute concurrently. Mechanisms to support
concurrency also make it more complex to design, code, test, debug and maintain

a concurrent algorithm than an equivalent serial algorithm.

The source of this complexity is the uncertainty about the passage of time
perceived by the concurrently executing components and this temporal uncer-
tainty originates from uncertainty about the dependencies between functions and

the interleaving of memory operations.

Functional programming overcomes the incidental complexity of determining
whether concurrently executing functions are dependent on each other as it em-
phasises the use of pure functions in which all dependencies are explicit. This
raises the question of how to express pure functions in such a way that program-

mers can incorporate them into existing imperative programs easily?
Section 2.2.3 discusses this problem in detail.

Functional programming eliminates the incidental complexity inherent in the
management of mutable shared state. Functional programming emphasises the
use of immutable data which can be safely shared between processors. This raises
the question of how to express immutable data in such a way that programmers

can incorporate it into existing imperative programs easily?
Section 2.2.4 discusses this problem in detail.

Transactional programming reduces the incidental complexity of coordinat-
ing concurrent actions between processors. Transactions permit the simultane-
ous speculative execution of functions in the absence of complete information
about their dependencies. This raises the question of how to express Memory
Transactions in such a way that programmers can incorporate them into existing

imperative programs easily?

Section 2.2.5 discusses this problem in detail.

4 CONTENTS

2.2.2 Minimising Temporal Uncertainty

The problem of supporting concurrency in an imperative programming language
can be broken down into the problems of determining dependencies between func-
tions, managing shared state and coordinating concurrent actions. The func-
tional and transactional programming paradigms offer solutions to these prob-
lems. Functional programming languages emphasise the use of pure functions
and immutable data as a means of identifying dependencies and managing shared
state respectively. Transactional programming emphasises the use of transactions
as a means of coordinating concurrent actions. However, the concurrency prob-
lem is not solved by translating a concept from one programming paradigm into
another. Solutions should be found to the problem of balancing concurrent work

while ensuring that operations appear to occur in the correct semantic order.

The elimination of impure functions and mutable state permits functional

programs to be decomposed into functions which can be evaluated in parallel.
Section 2.2.7 discusses the parallel evaluation of a functional program.

Certainty about the dependencies between functions permit a functional pro-

gram to be decomposed into functions which can be evaluated speculatively.
Section 2.2.8 discusses the speculative evaluation of functional programs.

There are synergies to be gained by incorporating these concepts into the
imperative programming paradigm in an integrated manner. Pure functions,
immutable data and Memory Transactions are difficult to incorporate into the
imperative programming paradigm, independently. However, each component
impose restrictions on the others so the combination is much less complicated
to implement and use than the sum of the parts. The imperative programming
paradigm can be used in program code that will not be executed concurrently so
modifications to existing imperative programs can be restricted to performance-
critical regions. The challenge is to combine these concepts in a way that makes

concurrent programming easier within the imperative programming paradigm.

The proposal developed in this thesis is to decompose programs into func-
tions acting on immutable data and to execute those functions speculatively as
Memory Transactions. In this way the transactional and functional programming

paradigms can be combined to support concurrent execution.

2.2. PARALLELISM 5

2.2.3 Functional Dependencies

A function that uses a value produced by another function is said to be dependent
on that function. The dependency implies that the functions should be executed
in a particular order called the precedence order of the functions. Functions that
are not dependent on each other may be executed concurrently. Precedence is
usually a weak ordering offering many opportunities for concurrent execution.
When there is uncertainty about the dependencies between functions it is not
safe to execute them concurrently but when the uncertainty about dependencies
is reduced the opportunities for exploiting concurrency increase.

An impure function is one that does not necessarily produce the same return
value each time it is executed with a given set of parameters. Impure functions
may have side effects. They read the state of memory in addition to their pa-
rameter list and they can modify the state of memory in addition to returning
a value. These side effects introduce dependencies between functions which are
not expressed in the function’s parameter list or return value. The dependencies
between functions should be known if they are to be executed concurrently.

Imperative programming languages are not usually expressive enough to allow
the identification of all functional dependencies. Consequently, it is often not
possible to identify sets of routines that do not contain dependencies and that
can safely be executed concurrently.

Functional programming is a style of programming that emphasises the use of
pure functions. Pure functions do not have side effects. The dependencies of pure
functions are easily determined because they are restricted to their parameters.
The effects of pure functions are restricted to the return values of the function.

An expression formed by the composition of pure functions is said to be ref-
erentially transparent. A referentially transparent expression corresponds to an
expression in pure mathematics; it is a timeless statement of truth.

Pure functions have many advantages over the impure functions typical of
imperative programming languages. The use of the functional program style in
imperative programs is explored in [HM97]. However, the functional program
style is in many ways orthogonal to the style in which imperative programs are
written. The difficulty of using pure functions in an imperative context arises
because imperative programming languages lack the expressiveness necessary to
enforce purity through the use of the type system. Imperative programming

languages permit the expression of simple pure functions but do not provide a

6 CONTENTS

suitably powerful mechanism to compose functions while retaining purity.

The advantages of pure functions are not compelling enough to overcome the
awkwardness of programming in a functional style within an imperative program-
ming language. However, in the context of concurrent execution, certainty about

functional dependencies makes concurrent programming a lot easier.

2.2.4 Mutable Shared State

When a function modifies data that is shared it must ensure that no function
executing on another processor is accessing that data at the same moment in
time. A function can only be certain about mutable data that is never shared.
The conventional approach to ensuring that a function has exclusive access to
shared data is to serialise access to it using mutual exclusion. An alternative
approach is to eliminate mutable shared data altogether and share only immutable
data. Both approaches increase the opportunities for exploiting concurrency by
reducing uncertainty about the order of access to shared data.

Imperative programming languages permit mutable shared data in the form
of variables, objects and data structures. Shared data cannot be simultaneously
modified by multiple processors safely. To prevent simultaneous modification
imperative programming languages implement mutual exclusion which serialises
the execution of a code section accessing shared data. The association between a
serialised code section and the shared data which it protects is a convention. It
is not expressed in, and is not enforced by, the programming language.

Functional programming emphasises the use of immutable data. Immutable
values cannot be modified once they have been written and can be safely shared
between processors without requiring mutual exclusion.

Immutable data can be organised into Immutable Data Structures. Immutable
versions of many common data structures are described in the literature [Oka98].
These Immutable Data Structures can have access times and space requirements
similar to their mutable counterparts.

Immutable Data Structures have received little attention outside the field of
functional programming languages and there are no publicly available libraries of
Immutable Data Structures implemented in imperative programming languages.
Immutable Data Structure are traditionally regarded as more difficult to imple-
ment than their ephemeral counterparts.

The use of immutable data is in many ways orthogonal to the imperative

2.2. PARALLELISM 7

program paradigm. In general, the use of Immutable Data Structures does not
make imperative programming easier and very few imperative programs make
use of them. However, in the context of concurrent execution immutable data is
much easier to reason about than mutable shared data so the use of Immutable

Data Structures makes concurrent programming a lot easier.

2.2.5 Coordinating Concurrent Actions

An algorithm may be decomposed into tasks that can be executed concurrently on
multiple processors. The actions of these tasks should be coordinated. However,
imperative programming languages do not offer a general solution to the problem
of coordinating actions on multiple processors.

Transactional programming is a style of programming that emphasises the
use of speculative execution. Transactions permit speculation by allowing their
affects to be undone should speculation prove incorrect. Transactions permit the
separation of the actual order of execution from the order in which operations
appear to have executed. It is the separation of the actual and apparent order of
execution which permits speculation.

Concurrent actions are easier to coordinate if their affects are restricted to
transactions. Transactions permit reactive and optimistic coordination, so con-
flicts can be detected after they happen, and can be corrected. Without trans-
actions coordination must be preemptive and pessimistic, so conflicting events
occurring on different processors must be anticipated and avoided.

The support for Memory Transactions within imperative programming lan-
guages is discussed extensively in this thesis. A central problem is how to express
a Memory Transaction within the imperative programming paradigm without

making extensive changes to existing applications?

2.2.6 Previous work

Harris develops a Software Transactional Memory system based on the specu-
lative evaluation of functions in the functional programming language Haskell
[HMPJHO05]. Haskell prevents a programmer from using impure functions or
mutable state so the choice of Haskell as the functional programming language
eliminates uncertainty about both functional dependencies and the interleaving

of memory operations. Harris describes the desirable properties of the functional

8 CONTENTS

and transactional programming paradigms and attempts to combine them.

Harris describes how uncertainty about the state of concurrent actions can be
reduced by speculative evaluation and proposes that Memory Transactions can
be supported by a functional programming language. Harris’s system permits a
programmer to use the atomic keyword to describe functions that will be eval-
uated speculatively as Memory Transactions. Harris was able to demonstrate
speed-up from concurrent execution.

Harris’s system combines pure functions, immutable data and Memory Trans-
actions to support concurrent execution. Our Transactional Data Structures also
combine these elements. However, Harris chooses to regard Memory Transac-
tions as atomic sections, whereas we choose to regard them as speculative access
to shared data, because atomic sections make the interaction between a program
and an external entity problematic. Brown ascribes much of the difficulty of
implementing a concurrent system in a functional programming language to the
problem of supporting 10 [Bro0§].

Harris’s system is based on modifying an existing functional programming
language and its run-time environment, whereas ours requires no modification to

the programming language, compiler or development tool chain.

2.2.7 Parallel Execution of Functional Programs

The evaluation of a functional program is a form of graph reduction in which a
function whose parameters are values can be replaced by its returned value. This
value becomes the parameter of its parent function in the tree. Eventually, the
function at the root of the abstract syntax tree can be replaced by the result
of the program. Peyton-Jones describes the process of converting a functional
program into an abstract syntax tree and performing the reduction to evaluate it
[PJ&7].

Figure 2.1 illustrates how a functional program can be expressed as an abstract
syntax tree representing the order of precedence of the functions.

Certainty about the dependencies between functions enables programs written
in functional programming languages to be evaluated concurrently. The problem
of identifying functions, within the abstract syntax tree, that can be evaluated
concurrently is the simple one of finding discrete sub-trees.

Figure 2.1 illustrates how discrete the sub-trees of an abstract syntax tree can

be evaluated in parallel.

2.2. PARALLELISM 9

f(f(f(q,r),f(f(s,1),f(u,v))), f(f(w,x),f(y,z)))

f(f(q,r).f(f(s,1),f(u,v)))

Figure 2.1: Parallel evaluation of a functional program. The shaded
sub-tree of the abstract syntax tree can be evaluated independent of the white
sub-tree.

It is straight-forward to identify discrete sub-trees in the abstract syntax tree.
However, the time taken to evaluate a sub-tree is not necessarily related to its
size and the problem of statically identifying a set of sub-trees that balance the
workload between processors is intractable in the general case. A great deal of
research effort has been applied to the balancing problem in specific cases and
for some types of parallel work there are sophisticated programming solutions to
the balancing problem such as NESL [Ble96]. The balancing problem can also be
solved by dynamically identifying and dispatching work to balance the execution

between multiple processors.

2.2.8 Speculative Execution of Functional Programs

Certainty about the dependencies between functions enables programs written in
functional programming languages to be evaluated speculatively.

A referentially transparent expression can be evaluated speculatively by sub-
stituting a value for a sub-expression that has not yet been evaluated. The
speculation is that the sub-expression will evaluate to the speculative value. Con-
currency is obtained by executing both the sub-expression yielding the value and

the expression dependent on the value in parallel. If the speculation is incorrect

10 CONTENTS

Figure 2.2: Speculative evaluation of a functional program. The specula-
tion is that the shaded sub-tree of the abstract syntax tree evaluates to p. The
white sub-tree can be evaluated independent of the shaded sub-tree. If the shaded
sub-tree evaluates to p then the evaluation of the white tree will be correct.

then the dependent expression can be evaluated again [PJGF96].

Figure 2.2 illustrates the use of value speculation to allow the concurrent
execution of a referentially transparent expression. The speculation is that the
expression f(f(s,t), f(u,v))) evaluates to p. The value p is used in place of the
shaded sub-tree. Both the shaded and unshaded trees can be evaluated in parallel.
If the shaded tree evaluates to p then the unshaded tree evaluates to the result
of the expression. Otherwise, the unshaded part of the tree must be evaluated
again using the actual value of the shaded tree.

Value speculation permits non-discrete sub-trees to be evaluated concurrently.

However, it does not contribute a solution to the problem of load balancing.

Bibliography

[Ble96]

[Bro08g]

[HMO7]

[HMPJHO5]

[Oka98|

[PJST]

[PJGF96]

Guy E. Blelloch. Programming parallel algorithms. Commun. ACM,
39:85-97, March 1996.

Neil Brown. Communicating Haskell Processes: Composable Ex-
plicit Concurrency Using Monads. In P.H. Welch et al., editor,
Communicating Process Architectures 2008, pages 67-83, 2008.

Pieter Hartel and Henk Muller. Functional C. Addison Wesley
Longman, April 1997.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. Composable memory transactions. In PPoPP °05: Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 48-60, New York, NY, USA, 2005.
ACM.

Chris Okasaki. Purely functional data structures. Cambridge Uni-
versity Press, New York, NY, USA, 1998.

Simon L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages (Prentice-Hall International Series in Com-
puter Science). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1987.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concur-
rent Haskell. In POPL °96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
295-308, New York, NY, USA, 1996. ACM.

11

	Parallelism
	Temporal Uncertainty
	Minimising Temporal Uncertainty
	Functional Dependencies
	Mutable Shared State
	Coordinating Concurrent Actions
	Previous work
	Parallel Execution of Functional Programs
	Speculative Execution of Functional Programs

	Bibliography

