Contents

6.3 Producer Consumer Queue 2
6.3.1 Experiment 2

6.3.2 Results. 3
6.3.3 Method 8
6.3.4 Workload simulation 9
6.3.5 Previouswork L 9
6.3.6 Mailbox Queue performance 11
6.3.7 Messaging Queue performance L. 11
6.3.8 Ease of implementation 12
6.3.9 Ease of programming0 12
6.3.10 Scalability o 13
6.3.11 Progress 13
Bibliography 15

2 CONTENTS

6.3 Producer Consumer Queue

To evaluate our technique for creating a non-blocking algorithm we compare the
ease of use of a bounded non-blocking Producer Consumer Queue with that of
a similar queue described in the literature. We also compare the performance of
our queue with that of its counterpart implemented using mutual exclusion. We
find that our queue is more flexible than the non-blocking queues described in the
literature. We also find that our queue performs similarly to a queue implemented
using mutual exclusion.

The Producer Consumer Queue is a concurrent design pattern. A bounded
Producer Consumer Queue can act as a message queue for Inter-Processor Com-
munication. Two classes of processors, the producers and the consumers, share
a common buffer which acts as a queue of messages between them. A producer
adds a message to the queue and a consumer removes it. The Producer Consumer
Queue guarantees that a producer cannot add a message onto the queue when it
is full and that a consumer cannot remove a message when it is empty and that
each message is consumed exactly once.

The main contribution of this section is an evaluation of a Producer Con-
sumer Queue implemented by an Immutable Data Structure. This section focuses
on comparing: throughput, ease of implementation, ease of use, scalability and

progress guarantees.

6.3.1 Experiment

Our experiment compares the performance of a lock-free bounded Producer Con-
sumer Queue implemented by an Immutable Data Structure with that of a block-
ing bounded Producer Consumer Queue implemented using mutual exclusion.

Section 6.3.3 describes the implementation of the Producer Consumer Queues
and the experimental set up.

We call a Producer Consumer Queue that transmits messages in a buffer a
Mailbox Queue and a queue that transmits references to messages a Messaging
Queue. We are primarily interested in transmitting messages between physical
processors so each end of the queue is accessed by thread of execution on a
different physical processor.

Figure 6.1 illustrates the Producer Consumer Queue design pattern.

The production and consumption of messages by an application effects the

6.3. PRODUCER CONSUMER QUEUE 3

Producer

ﬁ

Producer

Producer msg | msg | msg | msg | msg | msg item l \tem |tem item l ltem |tem

(a) Mailbox Queue (b) Messaging Queue

(

9

Figure 6.1: The Producer Consumer Queue design pattern.

(a) A Mailbox Queue acts as a buffer for fixed sized messages sent between pro-
ducers and consumers.

(b) A Messaging Queue transmits messages referenced by items in the buffer
between producers and consumers.

performance of the queue by introducing latency. Our experiment examines how
the throughput of the Messaging Queue varies depending upon this latency.
Section 6.3.4 describes a simulated message workload.
We examine whether our lock-free Producer Consumer Queue is easier to
implement than a similar non-blocking queue. We also compare the ease of use,
the scalability and the progress guarantees offered by our queue with those of

other blocking and non-blocking queues.

6.3.2 Results

This thesis does not make any claims about the absolute performance of Trans-
actional Data Structures. However, the results of our experiment show that the
performance of the non-blocking Producer Consumer Queue was broadly similar

to that of a queue implemented using mutual exclusion.

Maximum throughput of the Mailbox Queue

The maximum throughput of a Mailbox Queue implemented by the non-blocking
Producer Consumer Queue is compared with that of blocking queues from the
Boost C++ library [Kar05].

Table 6.1 lists the elapsed time taken to transmit messages between two pro-
cessors for various queue types.

Our non-blocking Producer Consumer Queue has the lowest overall execution

time. The implementation based on a deque from the standard library has the

4 CONTENTS

Algorithm Elapsed time (s)
Non-blocking Producer Consumer Queue 0.24
boost bounded circular buffer 0.28
boost bounded space optimised circular buffer 0.30
boost bounded std::deque container 0.25
boost bounded std::list container 0.85

Table 6.1: The maximum throughput of a Mailbox Queue. The elapsed
time taken to transmit one million mailbox messages between two processors for
various queue types is listed. The experiment determines the maximum through-
put of a Mailbox Queue with a capacity of one thousand 8 byte messages. Figures
given are the mean of 10 observations.

lowest elapsed execution time of the blocking implementations.
Section 6.3.6 discusses the performance of the Mailbox Queue in detail.

We conclude that the maximum throughput of our mailbox Producer Con-

sumer Queue is similar to that of its blocking counterpart.

Maximum throughput of the Messaging Queue

The maximum throughput of a Messaging Queue implemented by the non-blocking
Producer Consumer Queue is compared with that of a blocking queue from the
Boost C++ library.

Figure 6.2 and figure 6.3 illustrate the elapsed time taken to transmit messages

between processors while varying the latency of production and consumption.

The blocking queue has a lower elapsed time than the non-blocking queue,
regardless of the latency incurred by either the producer or the consumer. The
difference between the throughput of the queues becomes more pronounced as
the latency increases. When there is an imbalance between the latency of the
producer and that of the consumer the elapsed time taken by the non-blocking

queue is significantly longer than that taken by the blocking queue.
Section 6.3.7 discusses the performance of the Messaging Queue in detail.

We conclude that the maximum throughput of our messaging Producer Con-

sumer Queue is lower than that of its blocking counterpart.

6.3. PRODUCER CONSUMER QUEUE 5

Elapsed time (seconds)

0 1 1 1
0 5 10 15 20

Mean cache misses per message

Figure 6.2: The maximum throughput of a non-blocking bounded Mes-
saging Queue implemented by a confluently persistent Immutable Data
Structure. The elapsed time taken to transmit one million messages between
two processors is plotted against a varying number of forced cache misses in-
curred while: producing (*), consuming (x) and both producing and consuming
the messages (4). Figures given are the mean of 10 observations.

6 CONTENTS

Elapsed time (seconds)

Mean cache misses per message

Figure 6.3: The maximum throughput of a blocking Producer Con-
sumer Queue from the Boost library, implemented by the std::deque
container. The elapsed time taken to transmit one million messages between
two processors is plotted against a varying number of forced cache misses in-
curred while: producing (*), consuming (x) and both producing and consuming
the messages (+). Figures given are the mean of 10 observations.

6.3. PRODUCER CONSUMER QUEUE 7

Ease of implementation

The Canonical Binary Tree on which our Producer Consumer Queue is based is
a general solution to problems in concurrency, whereas a non-blocking algorithm
is typically a specialised solution to a particular problem.

Section 6.3.8 compares the ease of implementing our queue with that of other
queues.

We conclude that our Producer Consumer Queue implementation is more

flexible than either its blocking or non-blocking counterparts.

Ease of use

This thesis claims that Transactional Data Structures make concurrent programs
easier to write.

From the prospective of an application programmer our Producer Consumer
Queue is as easy to use as either a blocking queue or the non-blocking Producer
Consumer Queue developed by Scherer [SLS09].

Section 6.3.9 compares the ease of use of our queue with that of other queues.

We conclude that our Producer Consumer QQueue implementation is as easy

to use as either its blocking or non-blocking counterparts.

Scalability

This thesis claims that Transactional Data Structures facilitate the development
of scalable concurrent programs.

We found that the throughput of both our queue and a queue implemented
using mutual exclusion were unaffected by the number of processors concurrently
accessing them.

Section 6.3.10 compares the scalability of our queue with that of other queues.

We conclude that our Producer Consumer Queue implementation is as scalable

as either its blocking or non-blocking counterparts.

Progress guarantees

This thesis claims that concurrent programs that use Transactional Data Struc-

tures can guarantee progress.

8 CONTENTS

A Producer Consumer Queue implemented by mutual exclusion makes no
progress guarantees, whereas our non-blocking Producer Consumer Queue guar-

antees lock-free progress.

Section 6.3.11 compares the progress guarantees offered by our queue with

those offered by other queues.

We conclude that our Producer Consumer Queue implementation is preferable

to its blocking counterpart because it offers a progress guarantee.

6.3.3 Method

Experiments are performed using a PC with an Intel Core i7 860 processor oper-
ating at 2.8GHz with 8 MB of cache and 4GB of DDR3 SDRAM running at 1333
MHz. The examples are compiled using the Intel 64 bit C++ compiler with the

maximum optimisation level.

We use the bounded blocking Producer Consumer Queue coding example from
the Boost C++ library [Kar05]. Calls to the Boost Thread library are replaced
by corresponding calls to the Threading Building Blocks library and the scalable

memory allocator from this library is also used.

We use a bounded non-blocking Producer Consumer Queue based on a deque
implemented by the Canonical Binary Tree. The Canonical Binary Tree is bal-

anced but none of the optimisations, suggested in section ?? are implemented.

The memory occupied by the nodes is pre-allocated by the Threading Building
Blocks scalable memory allocator. Nodes that become unreachable are period-
ically garbage collected without blocking the execution. The memory occupied
by the leaves is allocated from a circular buffer. These locations are re-used but
the Canonical Binary Tree ensures that they appear immutable. The queue is
bounded by the leaf allocator which ensures that the front and back of the queue

do not meet.

The queueing applications we compare behave differently because the access
function of the blocking queue waits when the queue is empty, whereas the access
function of the non-blocking queue may fail and must be re-tried. However, both

applications transmit messages as fast as their queues allow.

6.3. PRODUCER CONSUMER QUEUE 9

6.3.4 Workload simulation

Inter-processor traffic is more difficult to characterise than network traffic. Stan-
dard protocols and benchmarks aid the evaluation of algorithms related to net-
work traffic, whereas Inter-Processor Communication is generally based on be-
spoke protocols. Concurrent applications use a mixture of message sizes and

perform varying amounts of work when preparing and processing messages.

The producer writes a message to memory and these writes are cached. The
atomic compare-and-swap instruction in both the blocking and non-blocking im-
plementations forces outstanding write operations buffered by the processor to
be written to memory, so when the consumer reads the message from memory
the operations are cache misses. The elapsed time taken to transmit messages is

dominated by the latency of these cache misses.

We simulate the work done during the production and consumption of mes-
sages by inducing cache misses, but it is not sufficient to assume that a fixed
number of cache misses is associated with each message. Messages are created
by applications which do a varying amount of work during the production and

consumption of messages and this behaviour must also be simulated.

We assume that the program issues memory operations that result in a cache
miss at random intervals and that the latency of these operations dominates
the production and consumption of the message. The number of cache misses
per message is modelled by a Poisson distribution. A Poisson distribution is a
discrete probability distribution that expresses the probability of a number of
independent events occurring in a fixed period of time. A cache miss can be

induced by accessing an array much larger than the processor cache.

6.3.5 Previous work

The C programming language does not specify a memory model so a concurrent
application written in C relies on the memory model implemented by the un-
derlying hardware architecture, but memory models implemented by hardware
architectures differ. Adve provides a comprehensive tutorial on shared mem-
ory consistency models [AG95]. Non-blocking structures implemented in C tend
not to be portable between different hardware architectures because the memory

models implemented by these architectures are different. For example, The Intel

10 CONTENTS

architecture software developer’s manual describes how the memory models im-
plemented by Intel IA-32 and Intel 64 bit processors differ [Int07]. It is difficult
to construct a Non-blocking algorithm in C that is portable between the IA-32
and Intel 64 bit platforms.

Marginean describes a simple lock-free Producer Consumer Queue, imple-
mented in C, in the mainstream magazine Dr Dobb’s journal [Mar(08]. This queue
suffers from several problems including a misplaced memory barrier and false as-
sumptions about the effect of atomic instructions on the iterators implemented
by the Microsoft template library. The magazine published a revised version of
the download code the following month but this too contained errors. Shutter
described a working version of the queue, albeit with a restricted interface, four

months after publication of the initial article [Shu08].

Non-blocking algorithms described in the literature may appear simple but
getting them right is very difficult. Herlihy’s book 'The art of Multiprocessor
Programming’ unintentionally illustrates the difficulty of finding errors in non-
blocking algorithms. This book has an extensive on-line errata, even though
it was clearly written and reviewed by experts [HS08]. Erroneous non-blocking
algorithms, such as double-checked locking, have even appeared in peer reviewed

conference publications [BBBT06].

The Java programming language has a clearly defined memory model. Manson
describes the Java memory model in detail [MPAO5]. The Java virtual machine
for a particular hardware architecture implements memory barriers to ensure
the correctness of functions in the Java libraries. Lea describes how portable

concurrent programs can be constructed using the Java language [Lea06].

Scherer describes a lock-free unbounded Producer Consumer Queue which is
called a scalable synchronous queue [SLS09]. This queue outperformed the queue
included in the Java SE 5.0 version of the java.util.concurrent library and
was subsequently included in Java 6. This queue does not contain messages in
the way that our Messaging Queue does. Instead, it queues instances of the
producers and matches them to available consumers to allow the handover of a
single message. Scherer’s thesis lists the program code which implements the
queue and describes its operation in detail [Sch06]. The program code required
to implement this queue is much shorter than that of our Canonical Binary Tree

implementation but this belies its complexity.

6.3. PRODUCER CONSUMER QUEUE 11

6.3.6 Mailbox Queue performance

The throughput of a Mailbox Queue implemented by mutual exclusion is depen-
dent on the standard library data structure that implements it. The std::list
container is implemented by nodes with both forward and backward pointers,
whereas the std::deque is implemented in managed blocks of storage. The size
of an element in a std::list is larger than that of the std::deque. A single atomic
compare-and-swap instruction is performed by each operation and the amount of
memory written by the synchronisation depends upon the implementation of the
data structure. The memory written by the synchronisation results in coherency
cache misses when it is read by the consumer. The latency of cache misses dom-
inates the execution time so the throughput of Mailbox Queue is dependent on
the size of the elements of the underlying data structure.

Each message is written to memory by the producer and then read by the
consumer. We estimate that this operation takes 800 cycles to complete so with
a processor speed of 2.8GHz one million operations take about (1000000800 /2.8
10%) = 0.29 seconds to complete.

The throughput of both our Mailbox Queue and the blocking queue is similar
because they are both bounded by the latency of a similar number of coherency
cache misses per message. To verify this we increased the size of the node in our
Canonical Binary Tree and found that the throughput of the mailbox queue was
reduced.

We did not expect the node size to make such a large difference to the perfor-
mance of Transactional Data Structures. This observation motivated the search
for ways of optimising the performance of the Canonical Binary Tree by reducing
both the size of the node and the number of nodes accessed. These optimisations

are described in section ?7.

6.3.7 Messaging Queue performance

The throughput of the Messaging Queue is, like the Mailbox Queue, bounded by
the latency of cache misses. However, some misses are a result of the simulated
processing of the messages.

When the production and consumption of messages is balanced the through-
put of the blocking and non-blocking Messaging Queues are broadly similar.

However, when the production and consumption of messages is imbalanced the

12 CONTENTS

throughput of the blocking queue is higher than that of the non-blocking queue.
When rate of production of messages is higher than the rate of consumption
the instantaneous size of the queue is larger and consequently the path in the
Canonical Binary Tree is longer.

The number of coherency cache misses incurred by each message processed by
the non-blocking queue is dependent on the length of the path in the Canonical
Binary Tree, whereas the number of coherency cache misses incurred by the block-
ing queue is independent of the size of the queue. Consequently the throughput
of the non-blocking queue is dependent on the balance between the producer and

the consumer, but the throughput of the blocking queue is not.

6.3.8 Ease of implementation

Both the non-blocking Producer Consumer Queue of Scherer and our Canonical
Binary Tree took a similar amount of time to develop, so our non-blocking Pro-
ducer Consumer QQueue is no easier to implement from scratch than a comparable
non-blocking queue [SLS09]. However, it is difficult to modify the ADT presented
by the queue of Scherer without affecting its progress guarantee, whereas our
queue can easily be tailored to the requirements of a particular application.

For example, a work stealing scheduler may be used to load-balance work
among multiple consumers. A work stealing scheduler associates a unique Pro-
ducer Consumer Queue with each consumer and it permits an idle consumer to
remove messages from the back of a queue associated with a busy consumer to
balance the work between consumers. Our Producer Consumer Queue can easily
be adapted to permit equal access to both ends. It is more difficult to adapt the

queue of Scherer to permit equal access to both ends.

6.3.9 Ease of programming

From the prospective of an application programmer our Producer Consumer
Queue is as easy to use as either a blocking queue or the non-blocking Producer
Consumer Queue of Scherer. However, Scherer’s queue is more portable than
our queue because it relies on the clearly defined Java memory model, whereas
our queue is implemented in C which relies on the model implemented by the
hardware architecture.

Our Producer Consumer Queue is more portable than other non-blocking

6.3. PRODUCER CONSUMER QUEUE 13

queues implemented in C because it relies on a single atomic compare-and-swap
instruction for synchronisation, whereas other non-blocking queues rely on sepa-
rate memory barriers which are architecture dependent [Shu08|.

For example, a windowing queue allows more than one message to be added
or removed by a single operation. Our Producer Consumer Queue can easily be
adapted to support windowing by applying concurrency control to a path created
by more than one access function. However, windowing is difficult to implement
using mutual exclusion and we were unable to find an open source implementation
of a windowing queue to compare our implementation against.

Ease of programming is a vague concept but we found our Producer Consumer
Queue to be both portable and adaptable. It is at least as easy to use as either

its blocking or non-blocking counterparts.

6.3.10 Scalability

Non-blocking algorithms are preferable to blocking algorithms because they are
potentially scalable, whereas the scalability of algorithms that use mutual ex-
clusion is fundamentally limited by Amdahl’s law. Even a non-blocking algo-
rithm that performs poorly on a modern Chip Multi-Processor is preferable to its
blocking counterpart because the non-blocking algorithm is potentially scalable,
whereas a blocking algorithm has limited scalability on any future hardware.
Goetz examines the scalability of the Producer Consumer Queues in the Java
library [GBBT06]. Goetz found that the throughput of the queue is unaffected by
the number of producers and consumers using it. We also found that the number

of processors accessing a queue did not make any difference to its throughput.

6.3.11 Progress

Non-blocking algorithms are preferable to blocking algorithms because they offer a
progress guarantee, whereas blocking algorithms do not. Even a non-blocking al-
gorithm that performs less well than its blocking counterpart is preferable because
the non-blocking algorithm guarantees progress, whereas its blocking counterpart
has the potential to block indefinitely.

A lock-free queue may suffer from the progress pathology of live-lock. This
occurs when two processors repeatedly prevent each other from successfully ac-

cessing the queue. In practice, our queue is unlikely to suffer from this pathology

14 CONTENTS

because the Time Stamp Ordering concurrency control protocol ensures that one
or other of the conflicting access functions takes precedence.

In practice, a Producer Consumer Queue is so simple and Chip Multi-Processors
are so reliable that the lack of a progress guarantee makes little difference once the
concurrent application is tested and shown to be working. However, programmers
do not always get things right first time. During the development of a concurrent
application a strong progress guarantee often makes the difference between an
application that does not work correctly and one that requires a system restart

to resolve dead-lock.

Bibliography

[AG95]

[BBB*06]

[GBB+06]

[HS08]

[Int07]

[Kar05]

[Lea06]

[Mar08]

[MPAO5]

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. IEEE Computer, 29:66-76, 1995.

David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr,
Doug Lea, Tom May, Jan-Willem Maessen, Jeremy Manson, John D.
Mitchell, Kelvin Nilsen, Bill Pugh, and Emin Gun Sirer. The
”double-checked locking is broken” declaration.
http://www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html, 2006.

Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David
Holmes, and Tim Peierls. Java Concurrency in Practice. Addison-

Wesley Longman, Amsterdam, 2006.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2008.

Intel Corporation. Intel 64 and [A-32 Architectures Software Devel-
oper’s Manual - Volume 3B, August 2007.

Bjorn Karlsson. Beyond the C++ Standard Library, an introduction
to Boost. Addison-Wesley Professional, 2005.

Douglas Lea. Concurrent Programming in Java(TM): Design Princi-
ples and Patterns (3rd Edition) (Java (Addison-Wesley)). Addison-
Wesley Professional, 2006.

Petru Marginean. Lock-free Queues. Dr. Dobb’s Journal, July 2008.

Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory
model. SIGPLAN Not., 40:378-391, January 2005.

15

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

16 BIBLIOGRAPHY

[Sch06] William N. Scherer, III. Synchronization and concurrency in user-
level software systems. PhD thesis, Department of Computer Science,
Rochester, NY, USA, 2006. AAI3204565.

[Shu08] Herb Shutter. Writing Lock-Free Code: A corrected queue. Dr. Dobb’s
Journal, October 2008.

[SLS09] William N. Scherer, Doug Lea, and Michael L. Scott. Scalable syn-
chronous queues. Commun. ACM, 52:100-111, May 2009.

	Producer Consumer Queue
	Experiment
	Results
	Method
	Workload simulation
	Previous work
	Mailbox Queue performance
	Messaging Queue performance
	Ease of implementation
	Ease of programming
	Scalability
	Progress

	Bibliography

