Contents

5.2 Serialisability oo 2
5.2.1 Simultaneous access. 2
5.2.2 Implementing Concurrency Control 3
5.2.3 Concurrent semantics 4
5.2.4 Simultaneous semantics 5)
5.2.5 Previouswork Lo 6
52.6 Variables. L 7
5.2.7 Functions and operations 8
5.2.8 Validation oo 12
529 Meta-data 12

Bibliography 15

2 CONTENTS

5.2 Serialisability

A transaction manager should ensure that the effects of functions accessing an
Immutable Data Structure are equivalent to those of a serialisable execution.
Functions acting on an Immutable Data Structure can be mapped onto abstract
read and write operations on variables and a concurrency control protocol can
be enforced on these operations to ensure serialisability. The protocol permits
functions to act on an Immutable Data Structure simultaneously, although not
all of them succeed.

Functions acting concurrently on an Immutable Data Structure can be made
linearizable but enforcement of this property restricts scalability because when
two functions simultaneously act on the same data structure only one of them
is successful. To improve scalability functions should be able to simultaneously
act on the same data structure successfully. The problem is how to ensure the
serialisability of functions that simultaneously act on a data structure?

The main contribution of this section is a technique for making functions
simultaneously acting on an Immutable Data Structure serialisable. This section
focuses on mapping these functions onto abstract read and write operations on

the variables considered by a concurrency control protocol.

5.2.1 Simultaneous access

This section considers how two functions can be permitted to act simultaneously
on an Immutable Data Structure.

When functions simultaneously access a semantically linearizable Immutable
Data Structure only one of them succeeds.

Section 5.2.3 discusses the semantics of functions concurrently accessing an
Immutable Data Structure.

The property of immutability allows the implementation of a mechanism that
permits simultaneous access while ensuring that the actions of one function ap-
pear to precede those of the other.

Section 5.2.4 discusses the semantics of functions simultaneously accessing an
Immutable Data Structure.

The problem of ensuring the serialisability of functions which simultaneously
access shared data has been successfully solved in the context of database sys-

tems. A database system ensures the correct concurrent semantics of transactions

5.2. SERIALISABILITY 3

simultaneously acting on a relational table by serialising the file operations on
the records that implement it. The file operations on these records are mapped
to abstract read and write operations and the transaction manager enforces a
concurrency control protocol on these operations to ensure that their effect is
equivalent to a serial execution. In a database system the variables on which the
concurrency control protocol acts are records and the operations that it consid-
ers are file operations. The records are, typically, the leaves of a B+tree data
structure which maintains the application data. There is a layer of abstraction
between a database table and the B+4tree which implements it, so there is a com-
plex relationship between a transaction expressed in SQL and the abstract read

and write operations considered by the concurrency control protocol [GR92].

5.2.2 Implementing Concurrency Control

The problem of ensuring the serialisability of functions simultaneously accessing
an Immutable Data Structure is one of mapping the functions onto a concurrency
control protocol and enforcing that protocol.

A concurrency control protocol is normally expressed in terms of a history of
abstract read and write operations on a system of variables so the functions must
first be mapped to operations on a set of variables.

Section 5.2.6 describes how an Immutable Data Structure is mapped onto
variables for the purposes of concurrency control.

Section 5.2.7 describes how the functions acting on the Immutable Data Struc-
ture are mapped onto abstract read and write operations on variables.

The concurrency control protocol is enforced by a validate function that en-
sures that conflicting operations conform to the protocol. Functions which contain
non-conforming operations are rejected.

Section 5.2.8 describes how conflicting operations can be detected by a validate
function.

A concurrency control protocol can be expressed as a set of invariants on
meta-data associated with abstract read and write operations. The Time Stamp
Ordering concurrency control protocol requires that these abstract read and write
operations are associated with time stamp meta-data which the functions collect
and record.

Section 5.2.9 describes how information about the operations can be recorded

as meta-data within an Immutable Data Structure and how the Time Stamp

4 CONTENTS

Ordering concurrency control protocol can be enforced.

5.2.3 Concurrent semantics

Immutable Data Structures have the property of structural linearizability. Struc-
tural modifications take place in isolation and appear to be atomic so no matter
which functions are concurrently applied to the data structure the resulting struc-
ture is always a valid structure. However, the property of structural linearizability
does not endow the ADT presented by the data structure with any meaningful
concurrent semantics. The concurrent behaviour of a structurally linearizable
data structure is uncertain because it may not reflect the action of all of the
functions that have acted upon it.

An Immutable Data Structure can be made semantically linearizable which
ensures that concurrently executing functions appear to take place at a single
moment in time. No matter which functions are concurrently applied to the data
structure the resulting structure is equivalent to some serial execution of those
functions. The concurrent semantics of a semantically linearizable Immutable
Data Structure are intuitive because functions appear to occur in some serial
order. However, only one of the functions simultaneously accessing the Immutable
Data Structure is successful and this limits scalability.

An Immutable Data Structure that permits tardy read access to past ver-
sions while ensuring the serialisability of mutating functions has the property of
partial persistence. This ensures that mutations appear to take place at a sin-
gle moment in time but the result of non-mutating functions do not necessarily
reflect the latest version of the data structure. The concurrent semantics of a par-
tially persistent data structure are easy to understand and can be useful. Some
applications require that mutations are serialised to ensure that a data structure
eventually reflects their effects, while permitting tardy read accesses. Partial per-
sistence can improve the scalability of concurrent applications because mutating
and non-mutating functions can execute at the same time.

For example, communication routers usually map symbolic names to IP ad-
dresses using a map based data structure called a PATRICIA trie [Mor68]. The
map is read each time a message is processed, which occurs frequently, but it
is only written when new IP addresses are added, which happens rarely. If the
penalty for an incorrectly routed message is small then a partially persistent

map can be appropriate. A partially persistent map permits read-only and write

5.2. SERIALISABILITY 5

accesses to take place simultaneously, while serialising writes. It separates the
concerns about the structure of the data, which is ensured by serialising access
to the root, from both concerns about the semantic order of modifications, which

is ensured by serialising writes, and concerns about the routing of messages.

5.2.4 Simultaneous semantics

This section considers the simultaneous behaviour programmers might expect
from an ADT.

Deque

The most desirable simultaneous behaviour for a deque would be for it to permit
serialisable simultaneously accesses to both ends. This behaviour can be described
in terms of the serialisable access to two variables, each representing a different
end of the queue.

For example, a Producer Consumer Queue is an application of a deque used
to communicate between concurrent processes. One process inserts elements on
one end of the queue and another process removes them from the other end. It

is desirable that processes can simultaneously insert and remove elements.

Map

The most desirable simultaneous behaviour for a map would be for it to permit
simultaneous access to different groups of elements while ensuring that the ac-
cesses to a single group of elements are serialisable. This can be described in
terms of the serialisable access to variables.

For example, fine-grained serialisability can be ensured by associating a small
discrete group of elements with a variable and coarse-grained serialisability can

be ensured by associating a larger discrete group with a variable.

Priority queue

The most desirable simultaneous behaviour for a priority queue would be for
it to permit simultaneous insertion of elements into the queue while ensuring
that the highest priority element is removed in serialisable order. The desirable

behaviour can be described in terms of the serialisable access to two variables,

6 CONTENTS

one representing the highest priority element and the other representing the rest

of the priority queue.

For example, an event scheduler is an application of a priority queue used
to communicate between concurrent processes. A process requesting an event
inserts an element onto the priority queue. Another process services the queue
by removing the highest priority element from the priority queue. It is desirable
that elements can be inserted by one process while the highest priority element
is removed by another. The insertion of elements onto the priority queue should
be serialisable and the removal of the highest priority element should also be

serialisable but it is not necessary to impose a serial order on all operations.

Vector

The most desirable simultaneous behaviour for a vector is semantic linearizability.
A mutating function has the potential to modify the relationship between the
ordinal numbers and values of any element in the data structure so simultaneous
access cannot be permitted. The desirable behaviour can be described in terms

of the serialisable access to a single variable representing the entire vector.

5.2.5 Previous work

The problem of permitting simultaneous access to the data structures used in
on-line gaming is commercially important and has received significant attention.
Multi-player on-line game applications are usually constructed around a massive
aggregate data structure called the game tree. The game tree contains informa-
tion about all of the objects within the game such as players and weapons and
their relationships. Actions in the game, such as a player dropping a weapon and
another player picking it up, are represented by actions on the game tree. Access
to the game tree is typically serialised by mutual exclusion. Sweeney identifies
the serial nature of actions on the game tree as a significant obstacle restricting
the performance of on-line games [Swe06]. Gajinov describes how Transactional
Memory can be used to improve the performance of an on-line game by allowing
actions on the game tree to execute speculatively [GZUT09]. The challenge is to
ensure correctness while permitting multiple functions simultaneous access the

data structure.

5.2. SERIALISABILITY 7

Figure 5.1: Labelling of variables in the cap of an Immutable Data
Structure. The variables in the cap of an Immutable Data Structure are labelled
11, I, Ir, c, rl, r and rr. The shaded path represents new instances of the variables.
The triangles represent subtrees suspended by the cap.

5.2.6 Variables

For the purposes of concurrency control an Immutable Data Structure can be
regarded as a system of variables. A concurrency control protocol ensures the
correct concurrent semantics of abstract read and write operations acting on
these variables. The functions implemented by the Canonical Binary Tree do not
maintain any mutable state so variables must be maintained immutably within
the Immutable Data Structure itself. The relative position of a vertex to the root
can be regarded as a variable and the annotation of a vertex can be regarded as
its value. A variable can have different values in each version of the data structure

even though the vertices that implement it are immutable.

Figure 5.1 illustrates the labelling of variables within a tree. Each variable
represents a position relative to the root. The value of a variable can only be

altered by creating a new version of the tree.

For the purposes of concurrency control it is only necessary to consider the
variables represented by a subset of the relative positions in the tree that we call
the cap. A version of the Immutable Data Structure can be larger or smaller
than the cap so a vertex may or may not correspond to a variable in cap. When

the data structure is larger than the cap the variables represented by the leaves

8 CONTENTS

of the cap act as proxies for the subtrees which they suspend.

The desirable behaviour of a deque can be described in terms of the serialisable
access to three variables 1, r and c. Variables 1 and r represent the front and back
of the deque respectively and the variable ¢ represents the empty queue.

A map can be represented either at a fine level of granularity, or at a coarse
level of granularity. The size of the cap determines the level of granularity.

A priority queue can be represented by two variables. The variables ¢ and 1
represent the highest priority element and the rest of the priority queue respec-
tively.

A sequence can be represented by a single variable c.

5.2.7 Functions and operations

When a variable is read or written information about the operation is recorded in
the data structure. A variable in the cap is either read, written or unaffected by
a function. A function is implemented by a path copy which creates new nodes.
A node records the type of abstract read and write operations that created it,
along with the time stamp meta-data required to enforce the concurrency control
protocol.

For the purposes of concurrency control the annotation of a node corresponds
to the value of a variable. An operation is regarded as writing a variable if
the annotation associated with its relative position in the tree changes. A read
operation records an access to a variable which did not change its value. When
the annotation associated with a relative position that is not in the cap changes
a write operation is recorded as acting on the variable that corresponds to the
node’s most junior ancestor in the cap.

A query() function causes every variable on the path to be read but it is only
necessary to record reads in nodes corresponding to variables in the cap. The
nodes on the path read by the query function that correspond to variables in the
cap are copied so that read operations can be recorded.

The insert() and delete() functions also read every variable on the path but
they also cause the annotation of some of the variables on the path to change.
The variables in the cap act as proxies for the variables in the subtrees they
suspend so a change in the annotation of a node at some point on the path is
represented by a write operation on a variable within the cap.

Figure 5.2 illustrates the abstract read and write operations on variables

5.2. SERIALISABILITY 9

y

ENERIED

Figure 5.2: Operations on variables in the cap of a deque. The cap con-
tains three variables 1, r and c. The function Push_front(q) acts on version V0
containing {r, s, t,u,v,w} to create version V1 containing {q,r, s, ¢, u,v,w}. The
operations {W/[l], R|c]} are recorded in the vertices corresponding to the cap.
The function Front() acts on version V1 to create version V2. The vertices cor-
responding to the cap are copied to record the operations {R[l], R[c]} performed
by this non-mutating access. The function Push_front(p) acts on version V2 to
create version V3 containing {p, q,r,s,t,u,v,w}. The operations {W]l], R[c|}
are recorded in the vertices corresponding to the cap.

10 CONTENTS

Cap ADT Semantics Access

0 All Structural linearizability | Uncontrolled
{c} All Semantic linearizability | Serialised
{c} All Partial persistence* Tardy reads
{l,c,r} Deque Serialisable Simultaneous
{L,c} Priority queue | Serialisable Simultaneous
{l,c,r} Map Fine grain serialisable Simultaneous
{IL,Ir,1,c, | Map Coarse grain serialisable | Simultaneous
rlrrr}

Table 5.1: Cap topology and granularity of concurrency. The topology of
the cap controls the granularity at which concurrency control is enforced. The
variables represented by the cap are listed in the first column. The third column
describes the semantics of the ADT. The permitted access is listed in the forth
column.

(*) Partial persistence is ensured by serialising mutating functions only.

recorded in the cap of a deque. Nodes in the Immutable Data Structure record
information about the operation that created them. Read and write operations

on the right node, r, can be labelled R[r] and W]r| respectively.

Figure 5.3 illustrates the abstract read and write operations on variables

recorded in the cap of a map.

The cap can enforce serialisability at any level of granularity including making
all functions accessing the data structure linearizable. A vector can be made

linearizable by serialisable access to a single variable c.

Table 5.1 describes how the cap determines the granularity at which concur-

rency control is enforced.

The Canonical Binary Tree hides structural information from the application
making the topology of the tree independent of the functions acting on it. The
topology of a Canonical Binary Tree is not invariant because the tree may be bal-
anced at any time. During balancing the topology of the tree is modified causing
new nodes to be created. These new nodes must maintain information about
the abstract read and write operations on the variables they represent. After a
balancing rotation, information about abstract read and write operations is in
the same positions relative to the root. The skew and split balancing rotations
cause the annotation of a node to change resulting in an abstract write operation

to the corresponding variable.

5.2. SERIALISABILITY 11

Exaafes

._‘
N

w
ol
wm

o

*

Figure 5.3: Operations on variables in the cap of a map. The cap contains
the variables 1Llr,1.c,rl.r and rr.

(a) The path created by the function Insert(6 — F') which creates version V1 is
shaded. The operations {W{rr], R[r], R|c]} are recorded in the vertices corre-
sponding to the cap. The annotation of the variable rr does not change, but it
is recorded as a write because there is a change in the subtree that it suspends.
(b) The Query(4) operation creates a new version V2 of the data structure to
record the operations {R[r]], R[r], R[c]} in the vertices corresponding to the cap.

12 CONTENTS

5.2.8 Validation

The concurrency control protocol is enforced by the validate function that takes
as its arguments two versions of the Immutable Data Structure. It considers the
operations on variables in the caps of both versions. Operations conflict if they
act on the same variables and one of them is a write. Conflicting operations may
or may not conform to the concurrency control protocol. The validate function
determines whether the versions contain conflicting operations that violate the
protocol.

Figure 5.4 illustrates conflicting and non-conflicting operations on a deque.

A value representing the topology of the cap is passed as a parameter to the
validate function. The validate function traverses the nodes in the cap of both
versions and compares the operations acting on nodes corresponding to the same
variable. When conflicting operations are detected the time stamp meta-data
is considered. The function returns a binary value which indicates whether or
not the two versions contain conflicting operations that are not permitted by the

protocol.

5.2.9 Meta-data

The two versions of the Immutable Data Structure considered by the validate
function do not necessarily represent the application of single functions to a com-
mon ancestor version. If they did then conflict resolution would only be a matter
of detecting conflicting abstract read and write operations on the same variable.
Indeed, the paths considered by the validate function are of arbitrary complexity
as they may represent the action of multiple functions applied to a common an-
cestor version. To resolve conflicts the Time Stamp Ordering concurrency control
protocol is applied to the time stamp meta-data recorded in the nodes.

The Time Stamp Ordering protocol works by comparing the read and write
time stamps of conflicting operations to determine whether the operations appear
to occur in the order given by the time stamp of the functions. Details of the
protocol and a proof that the operations that it permits are always equivalent to
a serial execution can be found in Bernstein [BHGS87].

The Time Stamp Ordering concurrency control protocol requires that a seri-
alisable system maintains a unique monotonically increasing time stamp source

and that a time stamp should be associated with all operations on variables. For

5.2. SERIALISABILITY 13

(b)

Figure 5.4: Conflicting and non-conflicting operations on a deque. The
cap contains three variables 1, r and c.

(a) Conflicting operations. The path created by the function Push_front()
records the operations {W/{l], R[c|} in the nodes corresponding to the cap. The
function creates a new version V1 by path copying from version V0. The path
created by the function Front() records the operations {R[l], R[c]}. The func-
tion creates a new version V2 by path copying from version V0. The functions
conflict because they both act on variable 1 and one of them is a write.

(b) Non-conflicting operations. The path created by the function Push_front()
records the operations {W/{l], R[c|} in the nodes corresponding to the cap. The
function creates a new version V3 by path copying from version V0. The path
created by the function Back() records the operations {R[r], R[c|}. The function
creates a new version V4 by path copying from version VO0.

14 CONTENTS

the purposes of concurrency control the serialisable system can be considered as
a single Immutable Data Structure so a time stamp source is maintained inde-
pendently by each data structure. A time stamp source can be implemented by
an ordinal number using an atomic increment instruction.

A unique time stamp is associated with each function call. Each node retains
the time stamp associated with the function that wrote the variable to which it
corresponds. Each node also retains the highest time stamp of any function that
reads the variable to which it corresponds.

The time stamps must be maintained in the correct positions relative to the
root and this requirement dictates the implementation of the functions of the
Canonical Binary Tree. Without this requirement the implementation of path
copy is somewhat arbitrary. For example, an element can be inserted into a tree
by creating a new root node whose children are the past version of the tree and
a leaf containing the element. The insert() operation cannot be implemented
in this way because it will alter the relative position of existing nodes. Instead,
the path to an existing leaf must be copied when an element is inserted into
the Canonical Binary Tree. The time stamps associated with each node on the
path are copied to the new node corresponding to the variable it represents. For
example, the second element in a Canonical Binary Tree must be inserted by a
leaf to root path copy operation which creates two new nodes to maintain the
relative position of time stamps.

Maintaining time stamps in the correct relative positions during balancing
is straightforward. The relative position of a node in the subtree suspended
by a pivotal node is altered by a balancing rotation. Both the skew and split
balancing rotations can be regarded as writing to the variable corresponding to
the pivotal node. It is not necessary to consider the time stamps of a node in
the subtree suspended by the pivot because this write operation will conflict with

any operation affecting a variable in this subtree.

Bibliography

[BHGS7]

[GR92]

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
1987.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1992.

[GZUT09] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrian Cristal,

[Mor68|

[Swe06]

Eduard Ayguade, Tim Harris, and Mateo Valero. Quaketm: paralleliz-
ing a complex sequential application using transactional memory. In
ICS ’09: Proceedings of the 23rd international conference on Super-
computing, pages 126135, New York, NY, USA, 2009. ACM.

Donald R. Morrison. Patricia - practical algorithm to retrieve infor-

mation coded in alphanumeric. J. ACM, 15(4):514-534, 1968.

Tim Sweeney. The next mainstream programming language: a game
developer’s perspective. In Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL 06, pages 269269, New York, NY, USA, 2006. ACM.

15

	Serialisability
	Simultaneous access
	Implementing Concurrency Control
	Concurrent semantics
	Simultaneous semantics
	Previous work
	Variables
	Functions and operations
	Validation
	Meta-data

	Bibliography

