
Contents

3.1 Speculative State . 2

3.1.1 The Memory Wall . 2

3.1.2 Immutable Memory . 4

3.1.3 Memory Bandwidth . 5

3.1.4 The effect of speculation 6

3.1.5 Moving the bottleneck . 7

3.1.6 Cache Coherency . 8

Bibliography 10

1

2 CONTENTS

3.1 Speculative State

The memory wall is an obstacle to obtaining scalable speed-up from the execution

of a program on a Chip Multi-Processor. Transactional Memory systems promise

to speed-up concurrent execution by removing the barriers to scalability imposed

by mutual exclusion, but concurrent speed-up has only been demonstrated in a

few applications, because the buffering of speculative state increases the memory

bandwidth requirement of a concurrent program, restricting scalability. The use

of immutable memory permits concurrent programs to scale to greater numbers

of processors before hitting the memory wall.

The effective memory bandwidth of a scalable concurrent program must be

independent of the number of processors participating in its execution.

The main contribution of this section is an examination of why the demon-

strable concurrent speed-up of general applications has remained elusive. This

section focuses on identifying the impact of the buffering of speculative state on

memory bandwidth as a factor limiting the speed-up that can be achieved.

3.1.1 The Memory Wall

For execution-bound programs there is a potential for speed-up from concurrent

execution on a Chip Multi-Processor. For such programs a barrier to concurrent

speed-up is mutual exclusion as described by Amdahl’s law. Speculative execution

avoids the need for mutual exclusion and alleviates the scaling restrictions of Am-

dahl’s law. However, the scaling of a concurrent program is bounded by restric-

tions imposed by both memory latency and memory bandwidth. Wulf describes

these restrictions which are collectively known as the memory wall [WM95].

The connection between the processors of a Chip Multi-Processor and main

memory has a finite bandwidth that is shared by all of the processors. The

connection consists of the caches, the memory controller and the wiring between

the processor chip and main memory. Contention in the common components of

the path to memory affects the speed at which memory requests can be serviced.

A program has a memory bandwidth requirement which is the bandwidth,

expressed in bytes per second, that it consumes. An increase in the memory

bandwidth requirement leads to an increase in the latency of individual memory

requests and an increase in the elapsed execution time of the program [HP06].

In a Chip Multi-Processor a finite memory bandwidth is shared amongst all of

3.1. SPECULATIVE STATE 3

the processors and this limits the speed-up that can be obtained from concurrent

execution. Increasing the available memory bandwidth is a much more difficult

engineering challenge than increasing the number of processors in a Chip Multi-

Processor so memory bandwidth tends to increase more slowly than aggregate

processing power.

Section 3.1.3 describes the limiting effect of memory bandwidth on execution

time and the difficulty of increasing the available bandwidth.

Buffering speculative state increases the memory bandwidth of a concurrent

program. Data is written twice, once as isolated speculative values and again as

shared committed values. Bookkeeping information, required to ensure correct

concurrent execution, is also written to memory. Wasted work from failed specu-

lation also contributes to the volume of data written to memory. Together these

factors cause a concurrent program to have a much higher memory bandwidth

requirement than the equivalent serial program.

Section 3.1.4 describes how storing speculative state increases the memory

bandwidth requirement of a program.

For many applications the memory wall is a constraint on the speed of serial

execution and such applications are known as memory-bound. It is reasonable

to expect that memory bandwidth will also be the main barrier to obtaining

concurrent speed-up on Chip Multi-Processors. The use of multiple processors

does little to alleviate the memory wall problem, instead Chip Multi-Processors

make the memory bandwidth problem more acute.

Section 3.1.5 describes how concurrent programming transforms an execution-

bound program into a program bounded by memory bandwidth.

Chip Multi-Processors enforce a cache coherency protocol to keep caches co-

herent but mechanisms to ensure cache coherency do not scale well. The over-

heads associated with maintaining coherent caches reduce the effectiveness of

caching and thus increase the effective memory bandwidth of a concurrent ap-

plication. The engineering difficulty of scaling cache coherency mechanisms is a

barrier to increasing the number of processors in a Chip Multi-Processor design.

Section 3.1.6 describes the difficulty of scaling the mechanisms that ensure

cache coherence.

4 CONTENTS

3.1.2 Immutable Memory

When only immutable data is used to represent shared state, the amount of shared

data that is either read or written to main memory by a program is independent

of the number of processors involved in its concurrent execution.

A concurrent program should maintain both speculative and shared state

immutably in memory. Immutable values are written just once so immutable

data satisfies the requirement that it does not increase memory bandwidth of a

program. Immutable values cannot change so cached copies are always coherent.

Immutability is a memory usage convention. A memory location is said to

be immutable if its value is written just once and cannot be changed thereafter.

Prior to writing the value the memory location cannot be reached by the program,

so the program cannot read memory locations that have not already been written

and cannot write to those locations that have already been written.

An immutable object is an object whose state cannot be modified once it has

been created. It can be regarded as a set of constant values. An object reference

associates an identifier with a location in memory where the object can be found.

An immutable object cannot be modified but a reference to it may be mutable, so

an identifier can be associated with different versions of an immutable object by

modifying its reference. A concurrent program that maintains state immutably

requires mutable memory to maintain both unshared state and shared references

to immutable objects.

Immutable objects can be relocated while retaining the property of immutabil-

ity. To relocate an immutable object in memory a copy of the object is made

at another location. Values can be inserted into and deleted from an immutable

object during the copy operation. It is possible to create an immutable object

with identical properties to any mutable object by implementing all of the ob-

ject’s mutating methods as constructors of new copies of the object. A serial

program that maintains state in immutable objects may have a different memory

bandwidth requirement from a similar program that uses mutable objects but

in many cases immutable objects can be implemented just as efficiently as their

mutable counterparts. It is not necessary to perform a full copy of an object

every time a mutating method is called to preserve the property of immutability.

Immutable data is written just once so an immutable value written spec-

ulatively does not need to be written again when it is shared. A concurrent

program that maintains shared state immutably scales without increasing its

3.1. SPECULATIVE STATE 5

memory bandwidth requirement as the total amount of data both written to and

read from memory is unaffected by the number of processors participating in its

execution.

An immutable object can never go stale in cache because its value cannot be

changed so it is not necessary to ensure that the cached copies of an immutable

object are coherent. However, a mechanism to enforce cache coherency is required

to ensure that all processors observe an up to date copy of the reference to the

immutable data.

Immutable data frees Chip Multi-Processors from the scaling restrictions of

cache coherency in two ways. Firstly, it is not necessary for the processor design to

enforce a cache coherency protocol for all memory locations, allowing the design

to be more scalable. Secondly, the cache pathologies of cache coherency misses

and false sharing do not occur and this increases the effective memory bandwidth

of the cache.

3.1.3 Memory Bandwidth

A program executing in parallel on two processors requires twice the memory

bandwidth of an equivalent program executing on one. The bandwidth require-

ment for processors executing general applications is around 1GB/s per core.

Desktop and server Chip Multi-Processors use single or dual DDRx memory sys-

tems. The maximum bandwidth of such an arrangement is less than 10GB/s.

Jacob offers a reason why four physical core Chip Multi-Processors are common

and eight core systems have yet to appear which is that, unless the memory sys-

tem is upgraded, an eight core system would perform no better than a four core

system [Jac09].

A solution to the problem of restricted bandwidth is to increase the memory

bandwidth of the processor. Historically, memory bandwidth has increased more

slowly than processor frequency for physical reasons, such as the difficulty of

scaling the number of off-chip pins. Increasing the number of off-chip pins is

challenging because of their energy requirements and because it increases the

complexity of printed circuit boards. Currently, processor frequency is static

and the number of processors on a chip is increasing. Jacob describes why the

number of concurrent memory operations that a processor’s memory controllers

can support is much harder to scale than the number of processors on the chip

[Jac09].

6 CONTENTS

Memory bandwidth can be increased to match the number of cores, but at

significant design cost. A Chip Multi-Processor saturates its memory subsystem

once the number of cores multiplied by the bandwidth of the program executing

on them reaches a maximum sustainable bandwidth. Jacob finds that the 32 core

Niagara Chip Multi-Processor has a memory subsystem that saturates at 25GB/s

so, the Niagara processor has a memory bandwidth of less than 1GB/s per core

[Jac09].

Memory bandwidth is limited by physical factors and dramatic increases in

bandwidth are unlikely in the near future. Consequently, proposals to support

concurrent programming should focus on decreasing the effective memory band-

width requirement of programs.

3.1.4 The effect of speculation

Transactional Memory systems take several different approaches to storing spec-

ulative state. Each of these approaches has its own relative merits, which are dis-

cussed in detail in the main reference book on Transactional Memory [HLR10].

However, each approach involves writing values to more than one location or

writing additional meta-data to memory. The additional memory writes tend to

increase the memory bandwidth requirement of the program.

Maintaining state in a recovery log is a common technique in Software Trans-

actional Memory systems. Logging state increases memory bandwidth as each

shared value must be written to main memory at least twice. Typically, a system

will write the old value of a location to a log before storing the new value. For

example, the logTM Software Transactional Memory system maintains the com-

mitted state of memory locations that have been written speculatively in a log

[MBM+06]. This technique is known as eager versioning. The amount of state

written to the log is equal to the amount of speculative state written by the pro-

gram. The latency of a memory write operation can be reduced by caching the

log but, eventually, both the old and new values must be written to main memory

as a result of the operation thus increasing the memory bandwidth requirement

of the program.

Maintaining speculative state in cache is a technique adopted by some Hard-

ware Transactional Memory systems. For example, the Hardware Transactional

Memory proposal of Herlihy and Moss maintains speculative state in a dedicated

transactional cache [HM93]. Speculative values are eventually written to main

3.1. SPECULATIVE STATE 7

memory in addition to committed values so the caching of speculative state in-

creases the memory bandwidth of a program. When cache contains both the

speculative and committed state of an object the number of distinct objects that

it can contain is reduced so the caching of speculative state also increases the

memory bandwidth of a program by reducing the effectiveness of cache.

Maintaining speculative state in a buffer is a technique adopted by many

Hybrid and Software Transactional Memory systems. Buffering shared state in-

creases memory bandwidth because objects must be copied when they are written.

Typically, a buffering Transactional Memory system will copy an entire object

to a new location when one of its fields is modified speculatively. The operation

usually has low latency because it occurs in cache, but the whole of the copied

object must eventually be written to main memory as a result of the operation.

Object copying increases the memory bandwidth of the program.

Each of these techniques require additional bookkeeping information to ensure

the correct concurrent execution of the program. This information will eventually

be written to main memory, increasing the effective memory bandwidth of the

program.

Speculative execution necessitates that some transactions will be aborted and

the work they did will be wasted. Memory operations performed by this wasted

work also increases the effective bandwidth of the concurrent program.

Transactional Memory increases the memory bandwidth requirement of the

program. In many cases the overhead of buffering speculative state is the main

factor limiting the speed-up that can be achieved from the concurrent execution

[Olu07].

3.1.5 Moving the bottleneck

The number of processing cores that it is possible to fit into a single Chip Multi-

Processor is expected to increase in future. As the number of cores increases

so does the potential speed advantage of concurrent programs over their serial

counterparts. Concurrent programming is universally accepted to be difficult but

at some point the speed advantage of concurrent execution will make the effort

of writing concurrent programs worthwhile.

This familiar argument is based on two questionable assumptions. Firstly, that

the difficult of writing concurrent programs is a major obstacle to the adoption of

concurrent programming. Secondly, that a concurrent program has the potential

8 CONTENTS

to execute faster on a Chip Multi-Processor than the equivalent serial program.

In many application programming environments, such as the computer games

industry, there are enormous financial incentives to improve concurrent perfor-

mance. In such environments no programmer effort is spared in utilising concur-

rent execution. The difficult of writing concurrent programs can be overcome by

applying many programmers to the task and requiring each of them to think very

hard. The real problem is that their efforts are so rarely rewarded by improved

performance of the program.

The elapsed execution time of a memory-bound program on a Chip Multi-

Processor is equal to or greater than the serial execution time, no matter how

many processors are applied to the problem. Only execution-bound programs

have the potential for a concurrent implementation executing on a Chip Multi-

Processor to execute faster than a serial implementation.

For execution-bound programs there is a potential speed-up from concurrent

execution. The first obstacle to realising this speed-up is that executing on mul-

tiple processors increases the bandwidth of the program causing it to become

memory-bound. The second obstacle is that instrumentation to support spec-

ulative execution increases the effective memory latency and bandwidth of the

program causing it to become memory-bound.

At best Transactional Memory converts a concurrent program with speed-up

restricted by mutual exclusion into a concurrent program with speed-up restricted

by the memory wall. Transactional Memory systems increase the memory band-

width of the program and this lowers the amount of scaling possible before a

concurrent program hits the memory wall. Programs that have a low memory

bandwidth requirement tend to scale well when the restrictions of mutual exclu-

sion are removed and these are the programs that Transactional Memory research

focuses on [PW10].

3.1.6 Cache Coherency

Small memories are generally faster than large memories because they contain

shorter wires. Processors maintain a hierarchy of caches of different sizes to

reduce memory latency and increase memory bandwidth. Chip Multi-Processors

maintain both shared and unshared caches. Typically, each processor has a small

local cache that is not shared and if a memory access cannot be satisfied from this

cache an attempt is made to satisfy it from a larger slower cache shared between

3.1. SPECULATIVE STATE 9

all of the processors of the Chip Multi-Processor.

To present a consistent view of memory to each processor a Chip Multi-

Processor implements a cache coherency mechanism which enforces a cache co-

herency protocol. A snoop-based cache coherency mechanism broadcasts the ad-

dress of memory locations that have been modified to all caches and a directory-

based mechanism records where all of the copies of a particular location reside.

Chip Multi-Processors generally enforce snoop-based protocols to avoid the ad-

ditional latency of accessing a centralised directory.

The implementation complexity of snoop-based cache coherency protocols in-

creases with processor count because the number of processors that can access a

memory bus is physically limited, so designers face the challenge of maintaining

coherency without the benefit of a single bus to serialise events [Sto06].

A coherency cache miss is a cache miss required to maintain coherency between

processor caches. When a cached location is modified by a processor all of the

copies of that location held in the local caches of the other processors must either

be updated or discarded. Typically, a snoop-based protocol regards the copies

held by the other processors as stale and marks them as invalid so the next

access to the location will result in a cache miss. Coherency cache misses tend

to increase with the processor count and are unaffected by cache size. They have

a detrimental effect on performance as each cache miss increases the effective

memory bandwidth of the program.

The messages sent between processors to maintain coherent caches are known

as coherency bus traffic. Coherency bus traffic increases with processor count

and is unaffected by cache size. Congestion on the bus has a detrimental ef-

fect on memory latency and additional bus traffic increases the effective memory

bandwidth of the program [HP06].

Bibliography

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-

ory, 2nd edition. Synthesis Lectures on Computer Architecture. Mor-

gan & Claypool Publishers, 2010.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-

chitectural support for lock-free data structures. In Proceedings of

the 20th Annual International Symposium on Computer Architecture,

pages 289–300, May 1993.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2006.

[Jac09] Bruce L. Jacob. The Memory System: You Can’t Avoid It, You

Can’t Ignore It, You Can’t Fake It. Synthesis Lectures on Computer

Architecture. Morgan & Claypool Publishers, 2009.

[MBM+06] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,

and David A. Wood. LogTM: Log-based Transactional Memory. In

HPCA, pages 254–265, 2006.

[Olu07] Kunle Olukotun. Chip Multiprocessor Architecture: Techniques to

Improve Throughput and Latency. Morgan and Claypool Publishers,

1st edition, 2007.

[PW10] Donald E. Porter and Emmett Witchel. Understanding transactional

memory performance. In ISPASS IEEE International Symposium on

Performance Analysis of Systems and Software, pages 97–108, 2010.

10

BIBLIOGRAPHY 11

[Sto06] Jon Stokes. Inside the Machine: An Illustrated Introduction to Mi-

croprocessors and Computer Architecture. No Starch Press, San Fran-

cisco, CA, USA, 2006.

[WM95] Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Impli-

cations of the obvious. Computer Architecture News, 23:20–24, 1995.

	Speculative State
	The Memory Wall
	Immutable Memory
	Memory Bandwidth
	The effect of speculation
	Moving the bottleneck
	Cache Coherency

	Bibliography

