Contents

4.3 Entanglement

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

Bibliography

Fine grained irregular parallelism

The composition of Immutable Data Structures

Entanglement and Persistence

Previous work

Low overhead check pointing

N J Ot W NN

2 CONTENTS

4.3 Entanglement

Algorithms with irregular fine-grained parallelism are difficult to compose into
transactions that are large enough to be worthwhile executing concurrently. The
solution is to compose such work into larger transactions that can be rolled-
back to a previous state when conflicts are detected. Check pointing reduces the
amount of work wasted when a conflict occurs. Check pointing and roll-back
mechanisms enable the efficient concurrent execution of algorithms with irregular
fine-grained parallelism.

The state of an algorithm can be represented by multiple data structures. To
permit roll-back they must be check pointed at a moment in time when they are
mutually consistent.

The main contribution of this section is a technique for composing Immutable
Data Structures to support check pointing and roll-back. This section focuses
on composing Immutable Data Structures so that they record a history of the

algorithm they implement.

4.3.1 Fine grained irregular parallelism

The overhead of scheduling concurrent execution places a lower bound on the size
of a transaction that is worthwhile scheduling. Many algorithms exhibit irregular
parallelism which is fine-grained and they appear not to be worthwhile executing
concurrently. A solution to this problem is to compose the work into transactions
that are large enough to execute concurrently, but this increases the likelihood of
conflicts and increases the amount of work wasted when conflicts do occur.

When composing fine-grained work into large transactions it is often desirable
to create a check point to reduce the amount of work wasted when conflicts occur.
The amount of wasted work is reduced by rolling-back to a state prior to the
conflict instead of entirely aborting a transaction. A mechanism for this check
points a consistent state of the algorithm, backtracks through previous states of
the algorithm when a conflict is detected and rolls-back to a consistent state of
the algorithm.

For example, consider an algorithm that removes an item from a queue, per-
forms a function on that item, which can conflict with an instance of the function
executing on another processor, and then places the result in a second queue.

This is typical of a wide range of problems that exhibit fine-grained parallelism,

4.3. ENTANGLEMENT 3

but for which no efficient concurrent algorithm is known. The operations on an
item may be regarded as a single transaction, but such a transaction can be too
small to be worthwhile scheduling. The presence of an item in one and only one
of the queues is an invariant of the algorithm. The algorithm is in a consistent
state only when this invariant is true. Check points should be taken at moments
in time when the invariants are preserved.

When executing an algorithm speculatively it might be necessary to discard
the speculative state, which can be represented by more than one data structure,
and re-start execution from some consistent past state of the algorithm. The
roll-back mechanism must roll-back so that it is not possible to observe an inter-
mediate state in which one data structure involved in the algorithm is rolled-back
and another not. One problem is to find a check pointing mechanism which can
ensure that all of the data structures involved in the algorithm are consist at
the moment the check point is taken. Another problem is to find a backtracking
mechanism that can backtrack through states of the algorithm to a previously
check pointed state. Another problem is to ensure that there is the appearance

of instantaneous state transition during the roll-back.

4.3.2 The composition of Immutable Data Structures

The composition of fine-grained work into larger transactions can be achieved
by composing the Immutable Data Structures involved in the algorithm into a
single data structure. We call this technique Entanglement. In graph theory
the Entanglement of a directed graph is a measure of how strongly the cycles of
the graph are intertwined. In the context of Immutable Data Structures we take
this to mean the composition of multiple Immutable Data Structures into one
Immutable Data Structure through a process of adding links. Entanglement is
achieved by referencing the root address of one Immutable Data Structure from
the leaf of another Immutable Data Structure.

Expanding on our example, consider a process that removes lower case letters
from a queue, which we call the parameter queue, converts them to upper case
and places them on another queue, which we call the result queue. The presence
of a letter in one or other of the queues, but not both, is an invariant of the
algorithm. The queues are said to be in a consistent state when this invariant
is true. A consistent state of the algorithm can be check pointed by recording a

reference to one of the data structures in the leaf of the other. When a conflict

4 CONTENTS

EERENEN N

A A D

i

Figure 4.1: A pair of entangled queues is created by referencing the root
of one queue from the leaf of another. In this example letters are removed from
the parameter queue, shown in the lower part of the figure, converted to upper
case and inserted into the result queue, shown in the upper part of the figure. In
version V0 of the entangled data structure the parameter queue contains the lower
case letter g. In version V1 the letter g has been removed from the parameter
queue and the upper case letter G has been added to the result queue. The new
root of the parameter queue is stored together with the converted letter in the
result queue. In this figure prior versions of the parameter queue are hidden for
clarity. The links from the leaves to the roots are dotted and the most recently
created path is shaded.

4.3. ENTANGLEMENT 5

is detected the reference in the leaf affected by the conflict indicates the root of
the entangled structure at the moment in time prior to the conflict. The data
structures can be rolled back to a consistent state by restoring this root. When
the root is restored the invariants of both data structures are preserved. To
ensure that the roll-back appears instantaneous the root of the entangled queues
is modified atomically.

Figure 4.1 illustrates an operation on the two logically separate data structures
which have been combined into a single structure by Entanglement.

Back tracking through past versions of an entangled data structure can be
achieved by examining only the most recent version. A leaf created by a conflict-
ing operation will contain a reference to the root of the entangled structure at
the moment in time prior to the conflict.

At their most basic, Memory Transactions allow the atomic modification of
discontinuous memory locations. Immutable Data Structures permit the atomic
modification of discontinuous memory locations which are part of the same data
structure and Entanglement extends this to locations which are not part of the
same logical data structure but which are affected by the same algorithm. Lin-
earizability is a composable property so the functions of our combined Immutable
Data Structures may also be linearizable.

Entanglement is a low overhead check pointing technique which works by
recording the execution of an algorithm immutably instead of logging state changes.
Entanglement satisfies our requirements for a solution to the problem presented
by fine-grained parallelism as it permits backtracking through the entangled data
structures and atomic roll-back to a state in which all the data structures involved

in the algorithm are consistent.

4.3.3 Entanglement and Persistence

An Immutable Data Structure can be entangled with a past version by adding a
reference to the root node of the version it was path copied from. This creates a
link between a version of the data structure and a past version. A self-entangled
Immutable Data Structure is persistent because past versions can be accessed by
a look-up function which follows the links.

Figure 4.2 illustrates an immutable directed min-tree which is entangled in

such a way that past versions can be accessed.

6 CONTENTS

VO

Figure 4.2: A persistent Directed min-tree is created by referencing the root
of a version from the leaf of the past version from which the path was copied. In
this example each leaf is linked to the version of the data structure from which
it was created by path copy. The links from the leaves to the roots are dotted
and the most recently created path is shaded. The Immutable Data Structure is
persistent because past versions are accessible by a look-up function which follows
these links.

4.3. ENTANGLEMENT 7

4.3.4 Previous work

Check pointing and roll-back mechanisms have been proposed as solutions to the
problem of fine-grained concurrency many times before [RW02],[HKO08],[WS08].
The primary drawback of each of these mechanisms is the overhead of check
pointing and of backtracking.

Conchon describes how a semi-persistent data structure can be used for check
pointing and roll-back [CF08].

When applied to a single data structure entanglement is a look-up mechanism
which makes a data structure persistent. A data structure that allows access to
past versions only through entanglement is semi-persistent because only ancestors
of the most recent version may be accessed. When applied to multiple data
structures entanglement permits the composition of two data structures, which

may not be persistent, to form a persistent data structure.

4.3.5 Low overhead check pointing

In a typical implementation of check pointing, changes are logged and values
are written to memory more than once. The sources of the overhead of check
pointing are similar to those of maintaining duplicate copies of shared state. In
our implementation data is written to memory once, so the overhead of check
pointing is reduced to that of storing a root address in each leaf of the entangled
data structure. Entanglement provides a mechanism for check pointing at very
little additional cost because immutable data is written just once.

In a typical implementation, backtracking is a serial process which takes place
while progress of the algorithm on other processors is halted. In our implementa-
tion the examination of past versions and the detection of conflicting operations
can take place in parallel with the actions of the algorithm itself.

In a typical implementation, roll-back requires that the progress of the al-
gorithm is halted so roll-back does not have concurrent semantics. In our im-
plementation roll-back only affects those transactions involved in the conflicting
operation. Entanglement provides a check pointing mechanism with intuitive con-
current semantics because events occurring during the execution of the algorithm

are check pointed rather than system states.

Bibliography

[CFO8]

[HKO08]

[RW02]

[WS08]

Sylvain Conchon and Jean-Christophe Filliatre. Semi-persistent data
structures. In Proceedings of the Theory and practice of software,
17th FEuropean conference on Programming languages and systems,
ESOP’08/ETAPS’08, pages 322-336, Berlin, Heidelberg, 2008. Springer-
Verlag.

Maurice Herlihy and Eric Koskinen. Checkpoints and continuations in-
stead of nested transactions. In TRANSACT ’08: 3rd Workshop on
Transactional Computing, February 2008.

Algis Rudys and Dan S. Wallach. Transactional rollback for language-
based systems. In Proceedings of the 2002 International Conference on
Dependable Systems and Networks, DSN 02, pages 439-448, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

M. M. Waliullah and Per Stenstrom. Intermediate checkpointing with
conflicting access prediction in transactional memory systems. In IPDPS,
IEFEF International Parallel and Distribued Processing Symposium, pages
1-11, 2008.

	Entanglement
	Fine grained irregular parallelism
	The composition of Immutable Data Structures
	Entanglement and Persistence
	Previous work
	Low overhead check pointing

	Bibliography

