TRANSACTIONAL DATA
STRUCTURES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

By
Kimberley Jarvis

Computer Science

Contents

Abstract
Declaration

Copyright

Acknowledgements

1 Introduction

1.1 Memory Transactions

1.1.1
1.1.2
1.1.3
1.14
1.1.5
1.1.6
1.1.7
1.1.8

Concurrent Programming
Design Priorities oo
Mutual Exclusion
Speculative execution
The development of Transactional Memory
Software Transactional Memory
Hardware Transactional Memory

Ease of programming

2 Concurrent Programming
2.1 Concurrent IO

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

The interaction with external entities
The Database Programming Model
Atomic Sections
Previous work oo
The Client Server Database Model

Heterogeneous Processors

2.2 Parallelism

11

12

13

14

15
15
15
17
18
18
19
19
20
22

2.2.1 Temporal Uncertainty 33

2.2.2 Minimising Temporal Uncertainty 35
2.2.3 Functional Dependencies 36
2.2.4 Mutable Shared State 37
2.2.5 Coordinating Concurrent Actions 38
226 Previousworko L 38
2.2.7 Parallel Execution of Functional Programs 39
2.2.8 Speculative Execution of Functional Programs 40

2.3 Compatibility oo 42
2.3.1 Disruptive changes to existing software 42
2.3.2 Compatibility with existing software 43
2.3.3 Making concurrent programs easier to write 44

3 Maintaining State 45
3.1 Speculative Stateo 46
3.1.1 The Memory Wall 46
3.1.2 Immutable Memory 48
3.1.3 Memory Bandwidth 49
3.1.4 The effect of speculation 50
3.1.5 Moving the bottleneck 51
3.1.6 Cache Coherency 52

3.2 Immutable Data Structures 54
3.2.1 Supporting Speculation L. 54
3.2.2 Immutable Data Structures 55
3.2.3 Immutability and Concurrency 55

3.3 Path Copying 58
3.3.1 Implementing Immutable Data Structures 58
3.3.2 Supporting Concurrent Access 63
3.3.3 Path copying transformations 65
3.34 Previousworko 70

3.4 Binary Treeso 71
3.4.1 A flexible Immutable Data Structure design 71
3.4.2 The Canonical Binary Tree 72
3.4.3 Previousworko 75

3.5 Abstract Data Types for Immutable Data 78
3.5.1 Priority Queueo oo 78

3.5.2 Directed min-tree 83
3.0.3 Deque 86
3.5.4 Directed deque 87
355 Map 91
3.5.6 Interval tree with sentinel 95
3.5.7 Vector 96
3.5.8 Directed sequence L. 100
3.5.9 Previouswork o 102

3.6 Balancing 103
3.6.1 Balancing schemes L. 103
3.6.2 Balancing the Canonical Binary Tree 105
3.6.3 Previouswork L 111
3.6.4 Utility functions 0oL 111
3.6.5 Optimisation, 111
3.6.6 Amortised access time 113

4 Accessing State 115
4.1 Linearizable objects oL 116
4.1.1 Weak Isolation 116
4.1.2 Strong Isolation 117
4.1.3 Linearizability oo 118

4.1.4 Previouswork 119
4.1.5 The semantics of weak isolation 119
4.1.6 Isolation pathologies 120
4.1.7 Nested Transactions 121

4.2 Persistent Data Structures 124
4.2.1 Accessing Previous Versions 124
4.2.2 Persistence e 125
4.2.3 The classification of persistent data structures 126
4.2.4 Previouswork o 128
4.2.5 The classification of Transactional Data Structures 129

4.3 Entanglemento 131
4.3.1 Fine grained irregular parallelism 131
4.3.2 The composition of Immutable Data Structures 132
4.3.3 Entanglement and Persistence 134
4.3.4 Previous work Lo 136

4.3.5 Low overhead check pointing 136

4.4 Minimum Spanning Tree 137
4.4.1 Experiment 137
442 Results. 139
4.4.3 Method 141
4.4.4 Serial Graph Colouring Implementation 142
4.4.5 Serial No-Colouring Implementation. 143
4.4.6 The concurrent implementation of Prim’s algorithm 144
4.4.7 Concurrent Graph Colouring Implementation 145
4.4.8 Previouswork oo 145
4.4.9 Concurrent No-Colouring Implementation 146
4.4.10 The performance of the Concurrent No-Colouring Imple-
mentation Lo 148
5 Concurrency Control 151
5.1 Distributed Concurrency Control 152
5.1.1 Centralised Concurrency Control 152
5.1.2 Distributed Concurrency control 153
5.1.3 Transaction Management 154
5.1.4 Previousworko 155
5.1.5 Time Stamp Ordering 155
5.1.6 Programmer productivity 156
5.2 Serialisability oo 158
5.2.1 Simultaneous access.o 158
5.2.2 Implementing Concurrency Control 159
5.2.3 Concurrent semantics 160
5.2.4 Simultaneous semantics 161
5.2.5 Previousworko 162
5.26 Variables. oL 163
5.2.7 Functions and operations 164
5.2.8 Validation 168
5.2.9 Metadata 168
5.3 Confluenceo 171
5.3.1 Simultaneous modifications 171
5.3.2 Meld Function oo 171
5.3.3 Previouswork o 173

6 Contention Management

6.1

6.2

6.3

6.4

Progress and Contention Management
6.1.1 Blocking o
6.1.2 Guaranteed Progress
6.1.3 The Dining Philosophers
6.1.4 Previous worko oL
Non-blocking Algorithms
6.2.1 Ensuring serialisability without blocking
6.2.2 Lock-free serialisability
6.2.3 Previouswork oL
6.2.4 Non-blocking evaluation
Producer Consumer Queue
6.3.1 Experiment
6.3.2 Results.
6.3.3 Method
6.3.4 Workload simulation
6.3.5 Previousworko Lo
6.3.6 Mailbox Queue performance
6.3.7 Messaging Queue performance
6.3.8 Ease of implementation
6.3.9 Ease of programmingo
6.3.10 Scalability o
6.3.11 Progress
Distribution and Scheduling
6.4.1 Scheduling
6.4.2 Load-balance
6.4.3 Scheduling parallel work
6.4.4 Previous worko oL

6.4.5 Transaction granularity

7 Conclusion

7.1

7.2
7.3

The flow of time
7.1.1 The notion of the flow of time as a global phenomenon

7.1.2 The notion of the flow of time as a local phenomenon . . .
Making scalable concurrent programs easier to write

Future work

175
176
176
177
177
180
182
182
183
185
186
190
190
191
196
197
197
199
199
200
200
201
201
203
203
204
205
206
207

7.4 Summary

Bibliography
Word count 65863

List of Tables

3.1
3.2
3.3
3.4

4.1

5.1

6.1

Directed min-tree implementation 85
Directed deque implementation 90
Map Implementation oL 95
Directed sequence implementation 101
Persistence types for Transactional Data Structures 129
Cap topology and granularity of concurrency. 166
The maximum throughput of a Mailbox Queue. 192

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

Parallel evaluation of a functional program 40
Speculative evaluation of a functional program 41
Insertion and deletion from an immutable deque 56
Full copying technique 59
Path copying technique 0oL 60
Fat node technique L oL 62
Node copying technique 64
Bracket and remove bracket operations 66
Immutable add bracket and remove bracket operations 68
Immutable insert and delete operations 69
The leaf to root path copying technique 70
Example Min-tree o 79
Associativity property of a min-tree 79
Insertion and removal of an element in a min-tree 80
Animation showing the growth of a min-tree 82
Example Directed min-tree 83
Example Dequeo L 86
Insertion and removal of an element in a deque 87
Animation showing the growth of a deque 88
Example Directed deque 89
Associativity property of a directed deque 90
Example interval treeo 91
Associativity property of an interval tree 92
Insertion and removal of an element in an interval tree 93
Animation showing the growth of an interval tree 94
Example Sequence 96
Associativity property of a sequence tree 97

9

3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.9

6.1
6.2

6.3
6.4

6.5
6.6
6.7

6.8

7.1

Insertion and removal of an element in a sequence tree 98
Animation showing the growth of an immutable sequence tree . . 99
Example Directed sequence 101
The associativity property permits balancing 104
A skew balancing rotationo 106
A split rotation oL 107
Example of a skew balancing rotation acting on a vector 108
Example of a split balancing rotation acting on a vector. 109
Version graphs L 127
A pair of entangled queues 133
A persistent Directed min-tree 135
Comparison of the elapsed time taken to calculate the minimum

spanning tree o Lo 140

Labelling of variables in the cap of an Immutable Data Structure 163

Operations on variables in the cap of a deque. 165
Operations on variables in the cap of amap. 167
Conflicting and non-conflicting operations on a deque 169
Making a deque confluently persistent 172
The dining philosophers 0. 178
The execution of an access function in the presence of concurrent

mutations L. 184
The abstract syntax tree of an expression 186

An Immutable Data Structure representing the evaluation of an

EXPIeSSION e e e 188
The non-blocking evaluation of an expression 189
The Producer Consumer Queue 191

The maximum throughput of a non-blocking bounded Messaging
Queue implemented by a confluently persistent Immutable Data
Structure 193
The maximum throughput of a blocking Producer Consumer Queue

from the Boost library, implemented by the std::deque container . 194

Observations about scalable concurrent systems 215

10

Abstract

Concurrent programming is difficult and the effort is rarely rewarded by faster
execution. The concurrency problem arises because information cannot pass in-
stantly between processors resulting in temporal uncertainty.

This thesis explores the idea that immutable data and distributed concur-
rency control can be combined to allow scalable concurrent execution and make
concurrent programming easier. A concurrent system that does not impose a
global ordering on events lends itself to a scalable distributed implementation. A
concurrent programming environment in which the ordering of events affecting
an object is enforced locally has intuitive concurrent semantics.

This thesis introduces Transactional Data Structures which are data struc-
tures that permit access to past versions, although not all accesses succeed. These
data structures form the basis of a concurrent programming solution that sup-
ports database type transactions in memory. Transactional Data Structures per-
mit non-blocking concurrent access to familiar abstract data types such as deques,
maps, vectors and priority queues. Using these data structures a programmer can
write a concurrent program in C without having to reason about locks.

The solution is evaluated by comparing the performance of a concurrent algo-
rithm to calculate the minimum spanning tree of a graph with that of a similar
algorithm which uses Transactional Memory and by comparing a non-blocking
Producer Consumer Queue with its blocking counterpart.

Kimberley Jarvis
Transactional Data Structures
Doctor of Philosophy

The University of Manchester
30 June 2011

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institute of learning.

12

Copyright

i.

il.

1il.

1v.

The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, De-
signs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such
copies made.

The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is avail-
able in the University IP Policy (see http://www.campus.manchester.ac.
uk/medialibrary/policies/intellectual-property.pdf), in any rele-
vant Thesis restriction declarations deposited in the University Library,
The University Library’s regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University’s policy on presen-

tation of Theses

13

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

I have been privileged to work with my supervisor Chris Kirkham and my advisor
[an Watson. They have given me an enormous amount of valuable advice and
guided me in the preparation of this thesis.

I owe a great debt of gratitude to my colleagues from the Advanced Processor
Technologies group at the University of Manchester where I have had the pleasure
of working closely with Mohammad Ansari, Behram Kahn, Christos Kotselidis,
Mikel Lujan, Ian Rogers and Jeremy Singer.

I am grateful to my father James Jarvis for improving the readability of this

thesis.

14

Chapter 1

Introduction

1.1 Memory Transactions

Concurrent programs that deliver scalable speed-up on Chip Multi-Processors are
difficult to develop. As the number of processing cores in a Chip Multi-Processor
increases so does the potential speed-up from concurrent execution but there are
few programs that actually achieve scalable concurrent speed-up when executing
on a Chip Multi-Processor.

Transactional Memory is a programming methodology that promises to make
concurrent programming easier and concurrent programs more scalable.

The main contribution of this section is to examine the challenges faced by
concurrent programming methodologies. This section focuses on whether Trans-

actional Memory systems really deliver on these promises.

1.1.1 Concurrent Programming

This thesis examines the problem of getting the processors of a Chip Multi-
Processor to work together on a single program and complete the program in less
time than it would take a single processor working alone. The program can be
divided into tasks which are simultaneously executed by the processors and these
tasks may or may not be interdependent.

The most commonly used concurrent programming technique is mutual ex-
clusion. Unfortunately, mutual exclusion limits the scalability of a concurrent
program and concurrent programming using mutual exclusion is regarded as dif-
ficult.

15

16 CHAPTER 1. INTRODUCTION

Section 1.1.3 introduces mutual exclusion.

Transactional Memory is a technique to support speculative execution that
can be used as an alternative to mutual exclusion. It facilitates scalable con-
current execution by allowing the simultaneous execution of tasks that may be

interdependent.

Section 1.1.4 introduces speculative execution and section 1.1.5 introduces

Transactional Memory.

Software Transactional Memory systems provide a software framework for pro-
grammers to construct concurrent programs that can be executed speculatively.
However, the overheads of supporting speculative execution entirely in software

often exceed the benefits of concurrent execution.

Section 1.1.6 discusses the claim that Software Transactional Memory makes

concurrent programming easier.

Hardware Transactional Memory systems support concurrent execution by
providing a hardware environment in which concurrent programs can be executed
speculatively. The engineering challenges that must be overcome by Hardware
Transactional Memory are significant and the commercial barriers to adoption

are high.

Section 1.1.7 discusses the claim that Hardware Transactional Memory makes

concurrent programming easier.

Transactional Memory can make programming easier by freeing the program-
mer from having to reason about locks, but concurrent programming using Mem-
ory Transactions is not necessarily easier than concurrent programming using

mutual exclusion.

Section 1.1.8 discusses the claim that Transactional Memory makes concurrent

programming easier.

Research carried out in both the private and public sectors has yet to produce
convincing evidence that Transactional Memory systems are making progress
towards delivering on their promise of scalability, because the overheads of sup-
porting concurrent execution exceed the benefits of concurrent execution. They
also fail to deliver on their promise of improved programmer productivity, because
concurrent programming using Memory Transactions is no easier than concurrent

programming using mutual exclusion.

1.1. MEMORY TRANSACTIONS 17

1.1.2 Design Priorities

Transactional Memory research is founded on the premise that speculative ex-
ecution is necessary to support scalable concurrent execution on Chip Multi-
Processors and it has the goal of making concurrent programming easier. This
thesis does not doubt this premise nor question this laudable goal, but it does
question the priorities that motivate the design of Transactional Memory systems.

Transactional Memory proposals prioritise some aspects of system design at

the expense of others:

e They focus on the speculative execution of programs, at the expense of the

interaction with external systems.

e They choose to buffer speculative state, at the expense of increased memory
bandwidth.

e They sacrifice strict transactional isolation, at the expense of semantic sim-

plicity.

e They centralise the responsibility for transaction management, at the ex-

pense of scalability.

e They focus on ease of programming per se, at the expense of total produc-

tivity across the software development cycle.

Given the disappointing progress of Transactional Memory systems to date it
is reasonable to suggest that some of the priorities can be re-assessed and that
designs based on a different set of priorities should be considered.

Some aspects of the design of a concurrent system that need to be considered

are:

e How to interact with entities outside the concurrent system?
e How to maintain shared state and support speculative execution?
e How to provide access to shared state with intuitive concurrent semantics?

e How to implement concurrency control to guarantee correct concurrent ex-

ecution?

e How to implement contention management to eliminate progress patholo-

gies?

18 CHAPTER 1. INTRODUCTION

e How to marshall work and schedule concurrent execution?

e How to integrate a concurrent programming solution into the software de-

velopment cycle?

This thesis is divided into chapters, each of which considers one aspect of
the design of a concurrent system. The first section of each chapter examines
how the priorities have influenced the design of concurrent systems. Subsequent
sections develop an alternative approach based on a different interpretation of

the priorities.

1.1.3 Mutual Exclusion

The most commonly used mechanism to support concurrent execution is mutual
exclusion. Mutual exclusion does not permit tasks with possible dependencies to
execute simultaneously. Instead, it permits those sections of a program in which
there are known to be no conflicting operations to execute in parallel and ensures
that the critical sections of the program, that may have dependencies, execute
serially.

If there is the slightest possibility of a dependency between tasks then they
must always be executed serially. Mutual exclusion ensures the serial execution
of critical sections regardless of how often dependencies between tasks actually
arise. As the number of processes is scaled up, the execution time of the program
code within the critical sections dominates and the benefit of parallel execution
is diminished. This effect is a consequence of Amdahl’s law [Amd67] [HMOS].

1.1.4 Speculative execution

An alternative to mutual exclusion should be capable of executing tasks opti-
mistically. A concurrent program can safely speculate that a task is not affected
by tasks running on other processors, provided it has a mechanism to re-execute
the task should that speculation prove incorrect.

To discover the dependencies between tasks, information must pass between
the processors performing them, while the program executes. Processors cannot
pass information to each other instantaneously, so each task has a slightly de-
layed view of the progress that tasks on other processors are making. This delay

necessitates speculative execution because if a processor were to wait for a task,

1.1. MEMORY TRANSACTIONS 19

on which it is possibly dependent, to complete then there would be little benefit

from executing on multiple processors.

1.1.5 The development of Transactional Memory

Research into Transactional Memory is comprehensively described in a book en-
titled ‘Transactional Memory’ [HLR10].

The following are some of the significant developments in the history of Trans-
actional Memory:

Lomet proposed the use of transactions within programs [Lom77].

Weihl proposed the use of transactions to support concurrent programming
[WLS83].

Stone recognised that Memory Transactions are dis-contiguous multi-word
atomic operations [SSHT93]. Computer hardware typically provides atomic op-
erations that act on a single word or a contiguous double-word in memory.

Herlihy and Moss proposed Hardware Transactional Memory [HM93]. A
Hardware Transactional Memory implements Memory Transactions by using mod-
ified hardware to support speculative execution.

Shavit proposed the conventional model of Software Transactional Memory
[ST95]. A Software Transactional Memory implements Memory Transactions
entirely in software by buffering speculative state in core or in a log.

Lie proposed Hybrid Transactional Memory [LA04]. Recent Hardware Trans-
actional Memory systems are typically hybrids involving both compiler and run-

time support for Memory Transactions executing on modified hardware.

1.1.6 Software Transactional Memory

Software Transactional Memory systems provide a framework and a run-time sys-
tem to support the speculative execution of Memory Transactions. Dependencies
between tasks are checked at run-time. If conflicting operations are found then
the tasks containing them are re-executed resulting in wasted work.

The influential paper “Software Transactional Memory: Why is it only a
research toy?” was written by the team responsible for IBM’s Software Trans-
actional Memory system [CBMT08]. They compared the performance of their
Software Transactional Memory with comparable systems from Intel and Sun
[ART08] [DDS06]. They examined the performance of programs from the STAMP

20 CHAPTER 1. INTRODUCTION

benchmark suite [CMCKOO8]. This benchmark suite contains programs that are
good candidates for concurrent execution. The team does not discuss the inter-
action with the Network or Operating System because the benchmark programs
are monolithic.

The team found that none of the Software Transactional Memory systems they
examined overcame the overhead of supporting Memory Transactions. They also
found that, as more processors were added to the concurrent system, the over-
heads of concurrent execution increased faster than the benefits, so the Software
Transactional Memory systems they studied did not exhibit scalable concurrent
execution.

The team concluded that complex concurrent semantics, weak atomicity,
transactional pathologies, the interaction with serial code, memory reclamation
and the support for legacy binaries are all major barriers to the development of
Software Transactional Memory.

The conclusion of the IBM paper is that Software Transactional Memory does
not achieve its goal of supporting scalable concurrent execution. Soon after pub-
lication of the IBM paper Microsoft cancelled its Software Transactional Memory
research project without publishing any results [Duf10].

This thesis examines why Software Transactional Memory fails to achieve this

goal and explores alternatives that might make the goal achievable in the future.

1.1.7 Hardware Transactional Memory

Hardware Transactional Memory systems use a combination of techniques in-
cluding run-time systems, modified programs and modified hardware to support
speculative execution. The original goal of Hardware Transactional Memory was
to facilitate the concurrent execution of critical sections in programs written
for mutual exclusion without program modification. Unfortunately, programs
written for mutual exclusion rarely contain enough information about dependent
variables for this to be achievable.

The influential paper “Early experience with a commercial Hardware Transac-
tional Memory implementation” was written by the team responsible for SUN’s
ROCK processor [DLMNO09]. The ROCK processor is a Chip Multi-Processor
which aims to support concurrent processing. The processor contained hardware
support for speculative execution and explicit support for Memory Transactions.

The team evaluated the system using programs from the STAMP benchmark

1.1. MEMORY TRANSACTIONS 21

suite [CMCKOO8].

Prior to the ROCK processor Hardware Transactional Memory research was
restricted to architectural simulation. A hardware architecture can be simulated
in software by a virtual machine on which the target program runs. Typically, the
proposed hardware support for Hardware Transactional Memory is included in the
virtual machine and the execution time for benchmark applications is determined
by simulation. The main problem with architectural simulation is that one cannot
be sure that the results will be similar to those that would be obtained were the
proposed modifications to be implemented in physical hardware. This is especially
true of simulated Chip Multi-Processors because cycle accurate simulation of the
shared memory subsystem is extremely difficult to achieve [Jac09]. The ROCK
processor was seen, by the Transactional Memory research community, as the
most significant Hardware Transactional Memory design to be implemented in

real hardware.

The team reported some speed-up on the benchmarks they tested. They also
demonstrated some scalability. However, the speed-ups were not very impressive
and a great deal of program adaptation was required to obtain them. The team

concluded that Hardware Transactional Memory is a promising area of research.

The ROCK project was cancelled a few months after publication of the paper
which might suggest that support for Hardware Transactional Memory in com-
mercial Chip Multi-Processors is not considered economically viable [Van09]. It
might also suggest that the benchmark results obtained from the hardware imple-

mentation were disappointing when compared to those of architectural simulation
[And09].

Many Transactional Memory research papers are able to demonstrate scalable
speed-up from the concurrent execution of benchmark applications. There is
no doubt that Hardware Transactional Memory implementations can speed-up
the concurrent execution of Transactional Memory benchmark programs, such
as those in the STAMP or DaCapo benchmark suites [CMCKOO08] [BGH'06].
However, these benchmark applications are not general applications. Performance
results obtained using them are not indicative of the performance one might

expect from the concurrent execution of an operating system or a game.

The conclusion of the ROCK paper is that Hardware Transactional Memory

does not achieve its goal of supporting scalable concurrent execution.

This thesis examines why Hardware Transactional Memory fails to achieve

22 CHAPTER 1. INTRODUCTION

this goal and explores alternatives that might make the goal achievable in the

future.

1.1.8 Ease of programming

Concurrent programs are difficult to write because using mutual exclusion to seri-
alise access to shared data is error prone. Concurrent programs must implement
mutual exclusion, correctly, to avoid the run-time problem of data races and the
pathology of deadlock. Concurrent programming must be done at a very low level
of abstraction, because locks are not composable, so the fundamental interaction
with the program cannot be hidden by abstraction [HMPJHO05].

Ease of programming is a subjective criterion for determining the efficacy of
Transactional Memory systems. Writing a concurrent program using Memory
Transactions can be just as difficult as writing one using mutual exclusion as it
is often very difficult to break an algorithm into transactions of sufficient size to
be worth scheduling. Transactional Memory systems are also prone to run-time
pathologies such as live-lock and priority inversion.

Research publications often claim that programming concurrent systems using
Transactional Memory is somehow easier than writing the same algorithm using
locks. In a sample of 25 papers chosen at random from the on-line transactional
memory bibliography we found that 17 asserted that Transactional Memory made
concurrent programming easier [JBR10]. However, none of the papers in our sam-
ple contained any explicit justification for this claim and most referred to it only
in the introductory section. Indeed, many of the papers contained descriptions of
syntax and semantics that would indicate precisely the opposite to be the case.

Many Transactional Memory research papers claim that concurrent program-
ming using Memory Transactions is easier than using mutual exclusion. However,
very few papers support this assertion with quantitative analysis or empirical re-
sults. In an exceptional paper Rossbach describes experiments that showed that
students found programming a concurrent algorithm using Software Transactional
Memory was just as difficult as constructing the same algorithm using mutual ex-
clusion [RHWO09]. Rossbach was not able to show that Memory Transactions were
easier to use than mutual exclusion.

The claim that transactional programming is easier than using mutual ex-
clusion is largely based on experience of programmers using transactions to pro-

gram Relational Database systems which is undoubtedly easier than accessing

1.1. MEMORY TRANSACTIONS 23

a database using mutual exclusion. Relational Database systems that support
serialisable transactional execution have largely replaced earlier systems, such
as CICS, in which the programmer is responsible for enforcing mutual exclusion
[GRI3]. However, Relational Database systems and Transactional Memory sys-
tems have very little in common as a Memory Transaction coded using an atomic
section is very different from a database transaction specified as a Structured
Query Language (SQL) statement. Transactional programming is easier in the
context of a database system but this does not necessarily mean that using Mem-
ory Transactions make concurrent programming easier in the context of a Chip
Multi-Processor.

If we compare the specification of TCC [HCWT04], an early Transactional
Memory system, with that of openTM [BMT*07], which is a more recent sys-
tem from the same institution, then we find the more recent specification to be
more complex. So, the claim that Transactional Memory systems have the po-
tential to make concurrent programming easier does not appear to be based on

an extrapolation of the current trend.

Chapter 2
Concurrent Programming

A concurrent program cannot communicate with an external entity or with a com-
ponent running on another processor while executing speculatively. The Trans-
actional Memory programming model does not offer a satisfactory solution to
the problem of communicating with entities outside the program nor does it offer
a way of avoiding the complexity inherent in coordinating concurrent actions.
This chapter examines the aspects of the database programming and functional
programming models that can be usefully incorporated into a concurrent pro-
gramming model.

Section 2.1 identifies the choice of mechanism to support Input and Output
(I0) and operating system interaction as one of the key decisions when designing
a concurrent system.

Section 2.2 identifies uncertainty about the passage of time as the source of
the complexity in a concurrent system.

Section 2.3 identifies the characteristics that a solution to the concurrency

problem must have.

24

2.1. CONCURRENT IO 25

2.1 Concurrent 10

The difficulty of presenting a consistent view of shared state to entities outside
the control of a program is central to the problem of concurrent programming.
A solution to this problem defines the structure of the concurrent program and
the nature of the interface with shared state. Concurrent programs do not exist
in isolation, they interact with the Operating System, the Network and human
interfaces. The requirements for the interaction with entities outside the control
of the system should be a primary design concern of any concurrent system.

Concurrent programs that conform to the database programming model present
a consistent view of shared state to their external interfaces. A concurrent pro-
gramming model for Chip Multi-Processors can be developed from the database
programming model.

The main contribution of this section is the identification of the features of
the database programming model that facilitate interaction with external en-
tities. This section focuses on adapting these features to create a concurrent

programming model for a Chip Multi-Processor.

2.1.1 The interaction with external entities

Transactional Memory systems do not treat the interaction with external entities
as a primary design priority. In fact many Transactional Memory systems do not
present any solution for interaction with external entities, other than to support
the output of a result at the end of program execution.

A concurrent program must conduct a serial interaction to each outside entity:.
There must actually be a causal, “happens before”, relationship between events
and their responses and concurrent programs must be built around this causal
relationship. It is not possible for a concurrent program to interact with an
external entity while it is executing speculatively. Speculative execution may
be aborted and restarted, its effects on shared state are speculative and can be
undone. However, the interaction with an external entity cannot be undone so
this interaction must be restricted to those parts of a concurrent program that
are executed inevitably.

A concurrent program presents the appearance of a serialisable interaction
with shared state. There must appear to be a causal, “happens before”, relation-

ship between events and their responses from the point of view of a particular

26 CHAPTER 2. CONCURRENT PROGRAMMING

external entity.

The requirements of the interaction with external entities dictate both the
structure of the concurrent program and the nature of its interface with shared
state. The causal relationships required by external interaction cannot easily be
engineered into a system designed with other priorities.

Transactional Memory systems execute some program code speculatively within
an atomic section, which prevents the program from interacting freely with ex-
ternal entities.

Section 2.1.3 discusses atomic sections.

The problem of presenting a consistent view of shared state to entities outside
the control of the concurrent program has been successfully solved by the database
programming model which describes how a concurrent system should interact
with external entities.

Both the Database programming model and the Transactional Memory pro-
gramming model rely on a transactional approach to concurrent processing. They
are targeted at different problem areas and assign different priorities to design cri-
teria. The main difference between them is that the database model regards the
concurrent interaction with the client as the primary design concern and regards
concurrency as a performance enhancement, whereas Transactional Memory re-
gards concurrent performance as the primary design goal.

Many Chip Multi-Processor systems, such as those used in embedded systems,
are heterogeneous. These systems consist of isolated components that communi-
cate with each other thereby internalising the problem of interaction.

Section 2.1.6 discusses the difficulty of writing concurrent applications for

heterogeneous processors.

2.1.2 The Database Programming Model

This section identifies features of the database programming model that facilitate
external interaction and adapts them to create a concurrent programming model
for Chip Multi-Processors. It suggests that a program that executes inevitably
can present a consistent view of shared state to external entities.

A database application program executes inevitably and restricts speculation
to the interaction with the database, whilst allowing the application to interact
freely with external entities. The proposal is that a concurrent program should

execute inevitably and that speculative execution should be restricted to the

2.1. CONCURRENT IO 27

interaction with shared state.

A database system isolates shared state from an application by implementing
the client server model, thereby allowing the interaction with shared state to be
treated as a transaction. Most Transactional Memory systems isolate shared state
weakly to improve performance and this prevents the program from presenting a
consistent view of shared state to external entities. The proposal is that shared
state should be stored in objects that are isolated from local state. The interfaces
to these shared objects should support Memory Transactions. This allows the
program to present a consistent view of shared state to external entities.

Section 2.1.5 discusses the Client Server Database programming model.

In our model Memory Transactions are specified in terms of an Application
Programming Interface (API) to shared memory. Application programs can in-
teract freely with external entities because they execute inevitably, whilst the
shared memory interface executes speculatively. This speculative execution is en-
capsulated within Memory Transactions that present a consistent view of shared
state to the application. This view is passed on to an external entity by the

application.

2.1.3 Atomic Sections

An atomic section is a programming idiom that supports the development of con-
current programs. An atomic section is a section of program code that appears to
be performed atomically and in isolation. An atomic section differs from a critical
section because the instructions within the atomic section can be simultaneously
executed by more than one processor, whereas a critical section guarantees that
only a single processor executes program code within the section at any particular
moment in time.

Speculative lock elision is an execution technique that permits the simulta-
neous speculative execution of program code within a critical section [RGO1]. Tt
permits a concurrent program written using mutual exclusion to be interpreted
as a program containing atomic sections. Within a section all memory writes are
considered speculative and when a conflict occurs the speculative state is rolled
back and corrective action is taken. The rationale behind speculative lock eli-
sion is that conflicts are rare and that execution of the section is unnecessarily
serialised by mutual exclusion.

To detect conflicts it is necessary to distinguish variables that are shared from

28 CHAPTER 2. CONCURRENT PROGRAMMING

variables that are local to a section. In programming languages that allow the
use of pointers, such as C, the locality of a variable is not explicitly defined by
the program. This limits the utility of atomic sections in general and speculative
lock elision in particular. In programming languages that do not allow the use of
pointers, such as Java, a system can attempt to determine the locality of variables

within a section using techniques such as escape analysis [SRO1].

Implementations of atomic sections require the programmer to indicate the
locality of variables to the run-time system in some way. However, the object ori-
ented programming model encourages programmers to place logically connected
variables with different access characteristics together in the same object. The
object oriented model is orthogonal to a model in which the locality of each

variable is considered individually.

The apparent simplicity of the use of the atomic keyword to identify an atomic
section belies the subtle complexities of the use of atomic sections. Atomic sec-
tions do not have intuitive concurrent semantics [CGE08]. They are prone to

isolation pathologies and are not composable [MBLO06].

Database systems support transactions without explicitly supporting atomic
sections [WAO02]. However, it is informative to consider applying the program-
ming model adopted by Transactional Memory to the programming of a Rela-
tional Database system. SQL is a complete functional programming language
so complex routines can be written as single SQL statements rather like atomic

sections.

Not surprisingly, a database program written in this way has many of the neg-
ative characteristics of a program written for Transactional Memory. SQL does
not have an IO mechanism so interaction with external systems is restricted. SQL
requires that each shared variable must be specified in the database schema so
such a program would be tedious to write. For these reasons Database program-
mers rarely write programs in this style and do not generally express transactions

as atomic sections.

The original proponents of Hardware Transactional Memory envisaged a hard-
ware system that would be able to execute programs written for mutual exclusion
by concurrently executing critical sections as atomic sections. They imagined that
this hardware system could implement transactions transparently and that crit-
ical sections could be converted into atomic sections so that applications would

not have to be changed. Today, few believe that this is achievable. Transactional

2.1. CONCURRENT IO 29

Memory systems require that an application program is significantly modified
to support Memory Transactions. Atomic sections seem at odds with modern
networked and object oriented applications. Despite this, the basic approach of
expressing Memory Transactions as atomic sections has remained the same since

Transactional Memory was first proposed.

2.1.4 Previous work

It is common for Transactional Memory systems to treat IO and Operating Sys-
tem interaction as engineering problems to be addressed at a late stage in the
implementation. However, it is difficult to engineer a serial interaction with
external entities into a system primarily designed around the requirements of
concurrent execution. This section describes attempts to engineer support for
external interaction into Transactional Memory systems.

The main reference book on Transactional Memory describes how Trans-
actional Memory systems perform IO and interact with the Operating System
[HLR10]. However, the limited coverage of the topic suggests that the interac-
tion with external systems is not the primary design concern when developing a
Transactional Memory system nor is it the main focus of Transactional Memory
research.

Transactional Memory systems take three general approaches to interaction.
Firstly, they delay interaction by buffering the output produced within an atomic
section. The buffer can be discarded if the atomic section is restarted. Secondly,
they undo interaction with the Operating System. A memory allocation within
an atomic section can be undone should the atomic section be restarted. Thirdly,
they stop concurrent execution before interacting with an external entity.

xCall is a Transactional Memory aware API that has been proposed for han-
dling system calls [VTG109]. xCall addresses the problem of performing IO while
executing speculatively. It also addresses the problem that the atomicity and iso-
lation guarantees made by the transactional system do not apply to the Operating
System kernel.

xCall provides output facilities to Memory Transactions by buffering 10 oper-
ations until a transaction has committed. This buffered output can be discarded
if speculation fails. The technique makes writing monolithic programs easier as
output can be built up as the program runs.

xCall improves the concurrent semantics of some system calls by undoing their

30 CHAPTER 2. CONCURRENT PROGRAMMING

effect when the transaction is aborted. This technique works well for memory
allocation but not all Operating System calls are reversible.

Applications in the STAMP benchmark suite stop all concurrent execution
before initiating output [CMCKOO08]. Software Transactional Memory systems
generally approach Operating System interaction in the same way as output.
They stop all concurrent execution before making a call to the Operating System.

Operating System interaction complicates the implementation of Hardware
Transactional Memory systems and a great deal of engineering effort is required
to support it. Many Operating System calls involve a context switch. The state of
the transaction prior to the context switch must be preserved and this state must
be restored after the Operating System call is complete [KHLW10]. For Hardware
Transactional Memory systems that buffer speculative state in cache the context
switch associated with Operating System calls is particularly problematic. The
Hardware Transactional Memory system must ensure that speculative state held
in cache is not flushed during the Operating System call.

In-memory databases implement the database programming model [Gra02].
In-memory database systems execute programs inevitably and present a consis-
tent view of shared state to external entities. However, many of the features
of in-memory databases, such as abstract query language and relational tables
are not suitable as a model of shared state for concurrent programming. A con-
current programming solution should adopt only those features of the database

model that are relevant to supporting the interaction with external entities.

2.1.5 The Client Server Database Model

The Client Server Database model addresses a similar problem to Transactional
Memory and it shares the goals of supporting scalable concurrent execution and
ease of programming. The reason why the programming styles and supporting
systems appear so different is that database programs treat the interaction with
external entities as the primary design concern and this affects every aspect of
the program and supporting system.

The Client Server Database model is a software engineering concept in which
the application processing and the management of shared data are regarded as
distinct processing tiers. These tiers do not share access to each other’s data and
the interaction between the tiers is restricted to passing messages between them.

The Client Server Database model provides the appearance of serial execution

2.1. CONCURRENT IO 31

to entities outside the control of the system. This is achieved by isolating and
serialising the interaction with any particular external entity through a client
server relationship. The processing of the interaction with each client is treated
as an independent task. These tasks can be executed concurrently while each
client experiences a serial interaction with the program.

In the Client Server Database model applications execute inevitably with spec-
ulative execution restricted to the accesses to shared data. The execution of a
program can be regarded as serial because it is isolated from concurrently exe-
cuting programs and because the access to shared data is serialised. In the Client
Server Database programming model, output is only contingent on committed
state so all speculative execution related to the output values must be committed
before output can start.

The Client Server Database model describes how shared state should be re-
stricted so that external entities experience a consistent view of shared state. This
is achieved by giving the appearance of a serialised interaction with shared state
to any particular external entity by using a database as the exclusive repository
of shared state.

A Client Server Database system treats state local to an application and
state shared between applications completely differently. State shared between
processes is restricted exclusively to values in the database, which can only be
accessed through the interface provided by the database, whereas state local to
an application can be accessed by the usual memory operations.

In the Client Server Database model all state shared between users is restricted
exclusively to the database. Data related to one client is isolated from data
related to any other client. Output must be based on committed shared state.
Typically, a database server will implement some kind of memory protection or
address space restriction to prevent instances of concurrently executing programs

affecting each other’s execution.

2.1.6 Heterogeneous Processors

Message passing is the predominant model for programming heterogeneous Chip
Multi-Processors. The message passing model restricts shared state to the inter-
nals of the message passing interface. The program must pass all shared values
in messages. When message passing is orchestrated, as it is in a parallel proces-

sor, it can be a very efficient way of sharing data, but when messages must be

32 CHAPTER 2. CONCURRENT PROGRAMMING

marshalled, as they are in an embedded Chip Multi-Processor, the overheads of
routing messages can be very high.

A communications protocol is used to pass messages between processors. A
programmer must be careful to abide by the rules of this protocol and handle all
conditions relating to the transmission of the message. It is possible to implement
layers of abstraction over message passing protocols but the fundamental interac-
tion with the program cannot be abstracted away [Zim81]. The usual approach
to programming heterogeneous systems is to avoid sharing any state at all by
using a programming language such as Erlang [Arm07]. There is almost univer-
sal agreement that concurrent programs for heterogeneous Chip Multi-Processors
are difficult to write [DLO09].

The reason why Transactional Memory has not been proposed as a technique
for making the programming of heterogeneous Chip Multi-Processors easier is
that heterogeneous processors do not have mechanisms for ensuring the consis-
tency of shared memory. Heterogeneous Chip Multi-Processors do not implement
mechanisms, such as cache coherency, which would allow them to share state.

The solution to the problems of allowing heterogeneous systems concurrent
access to shared data are solved by Client Server Databases which are naturally
heterogeneous. The mechanisms used to maintain shared state in a database

environment could serve as a model for heterogeneous Chip Multi-Processors.

2.2. PARALLELISM 33

2.2 Parallelism

It is difficult to express an algorithm, within an existing imperative program, in
such a way that a computer can execute it concurrently. The key to making this
easier is to remove the concept of shared mutable state from both the expression
of the program and its execution. This can be achieved by incorporating pure
functions and immutable data into the imperative programming paradigm. This
relieves the programmer of having to reason about dependencies and coordinate
concurrent execution.

Software is becoming more and more complex. Much of this complexity is
incidental, arising from the way problems are solved, rather than the problems
themselves. Unfortunately, the mechanisms required to utilise the concurrency af-
forded by Chip Multi-Processors introduce even more incidental complexity. The
functional programming and transactional programming paradigms offer ways to
reduce the incidental complexity arising from the utilisation of concurrent execu-
tion.

The main contribution of this section is to identify concepts fundamental to
the support of concurrent programming within the functional and transactional
programming paradigms. This section focuses on combining the concepts of pure
functions and immutable data within the context of an existing imperative pro-

gramming language.

2.2.1 Temporal Uncertainty

The imperative programming paradigm does not offer a satisfactory solution to
the problem of coordinating the concurrent actions of multiple processors as it
relies on the, essentially serial, concepts of impure functions and mutable state.

For many organisations the investment in existing software is too large to con-
template entirely re-writing working programs just to gain a performance benefit
from concurrency. Only a small region of a program benefits from concurrent exe-
cution. Finding a way to support the concurrent execution of performance-critical
regions of existing imperative programs is of great commercial importance.

This thesis focuses on the problem of expressing concurrency, within an ex-
isting imperative program, in such a way that a Chip Multi-Processor can obtain
speed-up from concurrent execution. Our approach is to combine aspects of

functional programming and transactional programming within the imperative

34 CHAPTER 2. CONCURRENT PROGRAMMING

programming paradigm.

The aim is to reduce the incidental complexity introduced into an algorithm
when it is expressed in such a way that it can execute concurrently on a Chip
Multi-Processor. This incidental complexity is not restricted to the additional
code required to allow a routine to execute concurrently. Mechanisms to support
concurrency also make it more complex to design, code, test, debug and maintain

a concurrent algorithm than an equivalent serial algorithm.

The source of this complexity is the uncertainty about the passage of time
perceived by the concurrently executing components and this temporal uncer-
tainty originates from uncertainty about the dependencies between functions and

the interleaving of memory operations.

Functional programming overcomes the incidental complexity of determining
whether concurrently executing functions are dependent on each other as it em-
phasises the use of pure functions in which all dependencies are explicit. This
raises the question of how to express pure functions in such a way that program-

mers can incorporate them into existing imperative programs easily?
Section 2.2.3 discusses this problem in detail.

Functional programming eliminates the incidental complexity inherent in the
management of mutable shared state. Functional programming emphasises the
use of immutable data which can be safely shared between processors. This raises
the question of how to express immutable data in such a way that programmers

can incorporate it into existing imperative programs easily?
Section 2.2.4 discusses this problem in detail.

Transactional programming reduces the incidental complexity of coordinat-
ing concurrent actions between processors. Transactions permit the simultane-
ous speculative execution of functions in the absence of complete information
about their dependencies. This raises the question of how to express Memory
Transactions in such a way that programmers can incorporate them into existing

imperative programs easily?

Section 2.2.5 discusses this problem in detail.

2.2. PARALLELISM 35

2.2.2 Minimising Temporal Uncertainty

The problem of supporting concurrency in an imperative programming language
can be broken down into the problems of determining dependencies between func-
tions, managing shared state and coordinating concurrent actions. The func-
tional and transactional programming paradigms offer solutions to these prob-
lems. Functional programming languages emphasise the use of pure functions
and immutable data as a means of identifying dependencies and managing shared
state respectively. Transactional programming emphasises the use of transactions
as a means of coordinating concurrent actions. However, the concurrency prob-
lem is not solved by translating a concept from one programming paradigm into
another. Solutions should be found to the problem of balancing concurrent work

while ensuring that operations appear to occur in the correct semantic order.

The elimination of impure functions and mutable state permits functional

programs to be decomposed into functions which can be evaluated in parallel.
Section 2.2.7 discusses the parallel evaluation of a functional program.

Certainty about the dependencies between functions permit a functional pro-

gram to be decomposed into functions which can be evaluated speculatively.
Section 2.2.8 discusses the speculative evaluation of functional programs.

There are synergies to be gained by incorporating these concepts into the
imperative programming paradigm in an integrated manner. Pure functions,
immutable data and Memory Transactions are difficult to incorporate into the
imperative programming paradigm, independently. However, each component
impose restrictions on the others so the combination is much less complicated
to implement and use than the sum of the parts. The imperative programming
paradigm can be used in program code that will not be executed concurrently so
modifications to existing imperative programs can be restricted to performance-
critical regions. The challenge is to combine these concepts in a way that makes

concurrent programming easier within the imperative programming paradigm.

The proposal developed in this thesis is to decompose programs into func-
tions acting on immutable data and to execute those functions speculatively as
Memory Transactions. In this way the transactional and functional programming

paradigms can be combined to support concurrent execution.

36 CHAPTER 2. CONCURRENT PROGRAMMING

2.2.3 Functional Dependencies

A function that uses a value produced by another function is said to be dependent
on that function. The dependency implies that the functions should be executed
in a particular order called the precedence order of the functions. Functions that
are not dependent on each other may be executed concurrently. Precedence is
usually a weak ordering offering many opportunities for concurrent execution.
When there is uncertainty about the dependencies between functions it is not
safe to execute them concurrently but when the uncertainty about dependencies
is reduced the opportunities for exploiting concurrency increase.

An impure function is one that does not necessarily produce the same return
value each time it is executed with a given set of parameters. Impure functions
may have side effects. They read the state of memory in addition to their pa-
rameter list and they can modify the state of memory in addition to returning
a value. These side effects introduce dependencies between functions which are
not expressed in the function’s parameter list or return value. The dependencies
between functions should be known if they are to be executed concurrently.

Imperative programming languages are not usually expressive enough to allow
the identification of all functional dependencies. Consequently, it is often not
possible to identify sets of routines that do not contain dependencies and that
can safely be executed concurrently.

Functional programming is a style of programming that emphasises the use of
pure functions. Pure functions do not have side effects. The dependencies of pure
functions are easily determined because they are restricted to their parameters.
The effects of pure functions are restricted to the return values of the function.

An expression formed by the composition of pure functions is said to be ref-
erentially transparent. A referentially transparent expression corresponds to an
expression in pure mathematics; it is a timeless statement of truth.

Pure functions have many advantages over the impure functions typical of
imperative programming languages. The use of the functional program style in
imperative programs is explored in [HM97]. However, the functional program
style is in many ways orthogonal to the style in which imperative programs are
written. The difficulty of using pure functions in an imperative context arises
because imperative programming languages lack the expressiveness necessary to
enforce purity through the use of the type system. Imperative programming

languages permit the expression of simple pure functions but do not provide a

2.2. PARALLELISM 37

suitably powerful mechanism to compose functions while retaining purity.

The advantages of pure functions are not compelling enough to overcome the
awkwardness of programming in a functional style within an imperative program-
ming language. However, in the context of concurrent execution, certainty about

functional dependencies makes concurrent programming a lot easier.

2.2.4 Mutable Shared State

When a function modifies data that is shared it must ensure that no function
executing on another processor is accessing that data at the same moment in
time. A function can only be certain about mutable data that is never shared.
The conventional approach to ensuring that a function has exclusive access to
shared data is to serialise access to it using mutual exclusion. An alternative
approach is to eliminate mutable shared data altogether and share only immutable
data. Both approaches increase the opportunities for exploiting concurrency by
reducing uncertainty about the order of access to shared data.

Imperative programming languages permit mutable shared data in the form
of variables, objects and data structures. Shared data cannot be simultaneously
modified by multiple processors safely. To prevent simultaneous modification
imperative programming languages implement mutual exclusion which serialises
the execution of a code section accessing shared data. The association between a
serialised code section and the shared data which it protects is a convention. It
is not expressed in, and is not enforced by, the programming language.

Functional programming emphasises the use of immutable data. Immutable
values cannot be modified once they have been written and can be safely shared
between processors without requiring mutual exclusion.

Immutable data can be organised into Immutable Data Structures. Immutable
versions of many common data structures are described in the literature [Oka98].
These Immutable Data Structures can have access times and space requirements
similar to their mutable counterparts.

Immutable Data Structures have received little attention outside the field of
functional programming languages and there are no publicly available libraries of
Immutable Data Structures implemented in imperative programming languages.
Immutable Data Structure are traditionally regarded as more difficult to imple-
ment than their ephemeral counterparts.

The use of immutable data is in many ways orthogonal to the imperative

38 CHAPTER 2. CONCURRENT PROGRAMMING

program paradigm. In general, the use of Immutable Data Structures does not
make imperative programming easier and very few imperative programs make
use of them. However, in the context of concurrent execution immutable data is
much easier to reason about than mutable shared data so the use of Immutable

Data Structures makes concurrent programming a lot easier.

2.2.5 Coordinating Concurrent Actions

An algorithm may be decomposed into tasks that can be executed concurrently on
multiple processors. The actions of these tasks should be coordinated. However,
imperative programming languages do not offer a general solution to the problem
of coordinating actions on multiple processors.

Transactional programming is a style of programming that emphasises the
use of speculative execution. Transactions permit speculation by allowing their
affects to be undone should speculation prove incorrect. Transactions permit the
separation of the actual order of execution from the order in which operations
appear to have executed. It is the separation of the actual and apparent order of
execution which permits speculation.

Concurrent actions are easier to coordinate if their affects are restricted to
transactions. Transactions permit reactive and optimistic coordination, so con-
flicts can be detected after they happen, and can be corrected. Without trans-
actions coordination must be preemptive and pessimistic, so conflicting events
occurring on different processors must be anticipated and avoided.

The support for Memory Transactions within imperative programming lan-
guages is discussed extensively in this thesis. A central problem is how to express
a Memory Transaction within the imperative programming paradigm without

making extensive changes to existing applications?

2.2.6 Previous work

Harris develops a Software Transactional Memory system based on the specu-
lative evaluation of functions in the functional programming language Haskell
[HMPJHO05]. Haskell prevents a programmer from using impure functions or
mutable state so the choice of Haskell as the functional programming language
eliminates uncertainty about both functional dependencies and the interleaving

of memory operations. Harris describes the desirable properties of the functional

2.2. PARALLELISM 39

and transactional programming paradigms and attempts to combine them.

Harris describes how uncertainty about the state of concurrent actions can be
reduced by speculative evaluation and proposes that Memory Transactions can
be supported by a functional programming language. Harris’s system permits a
programmer to use the atomic keyword to describe functions that will be eval-
uated speculatively as Memory Transactions. Harris was able to demonstrate
speed-up from concurrent execution.

Harris’s system combines pure functions, immutable data and Memory Trans-
actions to support concurrent execution. Our Transactional Data Structures also
combine these elements. However, Harris chooses to regard Memory Transac-
tions as atomic sections, whereas we choose to regard them as speculative access
to shared data, because atomic sections make the interaction between a program
and an external entity problematic. Brown ascribes much of the difficulty of
implementing a concurrent system in a functional programming language to the
problem of supporting 10 [Bro08|.

Harris’s system is based on modifying an existing functional programming
language and its run-time environment, whereas ours requires no modification to

the programming language, compiler or development tool chain.

2.2.7 Parallel Execution of Functional Programs

The evaluation of a functional program is a form of graph reduction in which a
function whose parameters are values can be replaced by its returned value. This
value becomes the parameter of its parent function in the tree. Eventually, the
function at the root of the abstract syntax tree can be replaced by the result
of the program. Peyton-Jones describes the process of converting a functional
program into an abstract syntax tree and performing the reduction to evaluate it
[PJ87].

Figure 2.1 illustrates how a functional program can be expressed as an abstract
syntax tree representing the order of precedence of the functions.

Certainty about the dependencies between functions enables programs written
in functional programming languages to be evaluated concurrently. The problem
of identifying functions, within the abstract syntax tree, that can be evaluated
concurrently is the simple one of finding discrete sub-trees.

Figure 2.1 illustrates how discrete the sub-trees of an abstract syntax tree can

be evaluated in parallel.

40 CHAPTER 2. CONCURRENT PROGRAMMING

f(f(f(q,r),f(f(s,1),f(u,v))), f(f(w,x),f(y,2)))

f(f(q,r),f(f(s,1),f(u,v)))

Figure 2.1: Parallel evaluation of a functional program. The shaded
sub-tree of the abstract syntax tree can be evaluated independent of the white
sub-tree.

It is straight-forward to identify discrete sub-trees in the abstract syntax tree.
However, the time taken to evaluate a sub-tree is not necessarily related to its
size and the problem of statically identifying a set of sub-trees that balance the
workload between processors is intractable in the general case. A great deal of
research effort has been applied to the balancing problem in specific cases and
for some types of parallel work there are sophisticated programming solutions to
the balancing problem such as NESL [Ble96]. The balancing problem can also be
solved by dynamically identifying and dispatching work to balance the execution

between multiple processors.

2.2.8 Speculative Execution of Functional Programs

Certainty about the dependencies between functions enables programs written in
functional programming languages to be evaluated speculatively.

A referentially transparent expression can be evaluated speculatively by sub-
stituting a value for a sub-expression that has not yet been evaluated. The
speculation is that the sub-expression will evaluate to the speculative value. Con-
currency is obtained by executing both the sub-expression yielding the value and

the expression dependent on the value in parallel. If the speculation is incorrect

2.2. PARALLELISM 41

f(f(f(a,r).p).f(f(w,x),f(y,z)))

Figure 2.2: Speculative evaluation of a functional program. The specula-
tion is that the shaded sub-tree of the abstract syntax tree evaluates to p. The
white sub-tree can be evaluated independent of the shaded sub-tree. If the shaded
sub-tree evaluates to p then the evaluation of the white tree will be correct.

then the dependent expression can be evaluated again [PJGF96].

Figure 2.2 illustrates the use of value speculation to allow the concurrent
execution of a referentially transparent expression. The speculation is that the
expression f(f(s,t), f(u,v))) evaluates to p. The value p is used in place of the
shaded sub-tree. Both the shaded and unshaded trees can be evaluated in parallel.
If the shaded tree evaluates to p then the unshaded tree evaluates to the result
of the expression. Otherwise, the unshaded part of the tree must be evaluated
again using the actual value of the shaded tree.

Value speculation permits non-discrete sub-trees to be evaluated concurrently.

However, it does not contribute a solution to the problem of load balancing.

42 CHAPTER 2. CONCURRENT PROGRAMMING

2.3 Compatibility

A solution to the concurrency problem must be compatible with existing pro-
grams and software development processes. Unfortunately, the changes needed
to support concurrent execution are not always confined to the performance crit-
ical regions of the program. This section explores how the compatibility criterion
restricts the design space of concurrent programming solutions.

The sole reason for writing a concurrent program is to obtain speed-up from
the performance-critical regions of a program that can benefit from parallel exe-
cution. These regions are only a small part of most programs and a solution to
the concurrency problem should only apply to these regions.

The main contribution of this section is the recognition that the potential ben-
efits of concurrent execution are rarely compelling enough to justify disrupting
existing software development processes or completely re-writing existing pro-
grams. This section focuses on defining the scope of possible solutions to the

concurrency problem that are compatible with existing software.

2.3.1 Disruptive changes to existing software

The benefit of exploiting concurrency must exceed the costs associated with im-
plementing it.

Section 2.3.3 explains why a worthwhile concurrent programming solution
must improve total software development productivity.

Research into concurrent programming tends to focus on obtaining speed-up
from the concurrent execution of regions of a program that benefit from it while
giving little consideration to the impact on those regions of a program that do
not. To be compatible with existing software a concurrent programming solution
must only affect the regions of a program that benefit from concurrent execution.

To stand a realistic chance of adoption a concurrent programming solution
should be compatible with existing software, libraries, operating systems, devel-
opment tools and hardware.

Parallel programming is a mechanism for reducing the elapsed execution time
of a program when the task dependencies are known, whereas concurrent pro-
gramming addresses the cases when task dependencies cannot be known until

the program is executed. Regions that benefit from parallel execution can occur

2.3. COMPATIBILITY 43

in the same application program as those that benefit from concurrent execu-
tion, so a concurrent programming solution should be compatible with a parallel
programming solution.

During the unit testing phase of application development it must be possible
to reproduce a problem for debugging purposes, during the acceptance testing
phase it must be possible to stimulate all possible program behaviours and in
production it must be possible to capture a program’s behaviour so that errors can
be reproduced. To be compatible with existing software a concurrent application
must exhibit reproducible behaviour, so that it can be integrated into existing
testing methodologies.

Thus, a concurrent programming solution must be locally applicable, compat-
ible with existing software and development processes, compatible with a parallel

programming solution and compatible with existing testing methodologies.

2.3.2 Compatibility with existing software

A concurrent programming methodology should be applicable locally and it should
not be necessary to structure a program around the requirements of those regions
that it is beneficial to execute concurrently. We found that, by focusing on the
shared state interface and developing concurrent applications, rather than con-
current systems, we were able to restrict the locality of program changes to those
routines that benefit most from concurrent execution.

A concurrent programming solution should be implemented in software, with-
out requiring changes to the compiler, the operating system or the software de-
velopment tool chain. We developed a concurrent programming solution in C++.
The use of a conventional imperative language, compiler and development tool
chain minimises the impact on existing programming methodologies.

A concurrent programming solution should be compatible with a parallel pro-
gramming solution. We focus on providing compatibility with the Threading
Building Blocks library [Int09]. Threading Building Blocks is an integrated paral-
lel programming solution for Chip Multi-Processors. Our solution allows Thread-
ing Building Blocks to schedule both tasks that are known to be independent and
tasks that may contain conflicting memory operations.

A concurrent execution environment should ensure reproducible application
behaviour. We focus on using time stamps to ensure the correctness of concurrent

execution. Time stamps can be used to ensure reproducible behaviour and to

44 CHAPTER 2. CONCURRENT PROGRAMMING

determine the relationship between tasks during the problem solving process.

2.3.3 Making concurrent programs easier to write

The goal of research into concurrent programming is to make it easier to create
scalable concurrent programs. To achieve this goal, the benefit from the reduction
in the execution time of a concurrent program, relative to an equivalent serial
program, must exceed the total cost associated with making that program execute
concurrently.

A technique that makes program coding easier might make a program more
difficult to debug offsetting any programmer productivity gains. Any proposal to
make programming easier should improve productivity when amortised over the
entire development process including: program design, coding, debugging, test-
ing, operation and maintenance. The benefits of a new programming technique
must also exceed the costs associated with learning it and the cost of rectifying
mistakes made when it is applied incorrectly.

Regions of many types of application may benefit from concurrent execution,
so the challenge is to integrate techniques to support concurrency into existing
programming environments in such a way that utilising concurrency in those

regions is worthwhile.

Chapter 3
Maintaining State

A concurrent program that uses mutable speculative and shared state is not
scalable. Transactional Memory systems buffer speculative and shared state at
the expense of increased memory bandwidth which limits scalability. This chapter
examines how immutable data offers a means of maintaining both speculative and
shared state that permits a concurrent program to scale.

Section 3.1 identifies the choice of where to store speculative state as one
of the central design decisions of a Transactional Memory system. The section
reviews the mechanisms that Transactional Memory systems employ to support
shared and speculative state and it proposes an alternative approach in which
both speculative and shared state are stored immutably.

The remainder of the chapter focuses on an implementation of an Immutable
Data Structure suitable for use in a concurrent execution environment.

Section 3.2 describes how Immutable Data Structures can be used to store
speculative state.

Section 3.3 describes techniques for implementing Immutable Data Structures.

Section 3.4 describes an Immutable Data Structure that we call the Canonical
Binary Tree.

Section 3.5 describes how the Canonical Binary Tree can be specialised to
implement common ADTs.

Section 3.6 describes how the Canonical Binary Tree can be balanced to min-

imise access time.

45

46 CHAPTER 3. MAINTAINING STATE

3.1 Speculative State

The memory wall is an obstacle to obtaining scalable speed-up from the execution
of a program on a Chip Multi-Processor. Transactional Memory systems promise
to speed-up concurrent execution by removing the barriers to scalability imposed
by mutual exclusion, but concurrent speed-up has only been demonstrated in a
few applications, because the buffering of speculative state increases the memory
bandwidth requirement of a concurrent program, restricting scalability. The use
of immutable memory permits concurrent programs to scale to greater numbers
of processors before hitting the memory wall.

The effective memory bandwidth of a scalable concurrent program must be
independent of the number of processors participating in its execution.

The main contribution of this section is an examination of why the demon-
strable concurrent speed-up of general applications has remained elusive. This
section focuses on identifying the impact of the buffering of speculative state on

memory bandwidth as a factor limiting the speed-up that can be achieved.

3.1.1 The Memory Wall

For execution-bound programs there is a potential for speed-up from concurrent
execution on a Chip Multi-Processor. For such programs a barrier to concurrent
speed-up is mutual exclusion as described by Amdahl’s law. Speculative execution
avoids the need for mutual exclusion and alleviates the scaling restrictions of Am-
dahl’s law. However, the scaling of a concurrent program is bounded by restric-
tions imposed by both memory latency and memory bandwidth. Wulf describes
these restrictions which are collectively known as the memory wall [WM95].
The connection between the processors of a Chip Multi-Processor and main
memory has a finite bandwidth that is shared by all of the processors. The
connection consists of the caches, the memory controller and the wiring between
the processor chip and main memory. Contention in the common components of
the path to memory affects the speed at which memory requests can be serviced.
A program has a memory bandwidth requirement which is the bandwidth,
expressed in bytes per second, that it consumes. An increase in the memory
bandwidth requirement leads to an increase in the latency of individual memory
requests and an increase in the elapsed execution time of the program [HP0G].

In a Chip Multi-Processor a finite memory bandwidth is shared amongst all of

3.1. SPECULATIVE STATE 47

the processors and this limits the speed-up that can be obtained from concurrent
execution. Increasing the available memory bandwidth is a much more difficult
engineering challenge than increasing the number of processors in a Chip Multi-
Processor so memory bandwidth tends to increase more slowly than aggregate

processing power.

Section 3.1.3 describes the limiting effect of memory bandwidth on execution

time and the difficulty of increasing the available bandwidth.

Buffering speculative state increases the memory bandwidth of a concurrent
program. Data is written twice, once as isolated speculative values and again as
shared committed values. Bookkeeping information, required to ensure correct
concurrent execution, is also written to memory. Wasted work from failed specu-
lation also contributes to the volume of data written to memory. Together these
factors cause a concurrent program to have a much higher memory bandwidth

requirement than the equivalent serial program.

Section 3.1.4 describes how storing speculative state increases the memory

bandwidth requirement of a program.

For many applications the memory wall is a constraint on the speed of serial
execution and such applications are known as memory-bound. It is reasonable
to expect that memory bandwidth will also be the main barrier to obtaining
concurrent speed-up on Chip Multi-Processors. The use of multiple processors
does little to alleviate the memory wall problem, instead Chip Multi-Processors

make the memory bandwidth problem more acute.

Section 3.1.5 describes how concurrent programming transforms an execution-

bound program into a program bounded by memory bandwidth.

Chip Multi-Processors enforce a cache coherency protocol to keep caches co-
herent but mechanisms to ensure cache coherency do not scale well. The over-
heads associated with maintaining coherent caches reduce the effectiveness of
caching and thus increase the effective memory bandwidth of a concurrent ap-
plication. The engineering difficulty of scaling cache coherency mechanisms is a

barrier to increasing the number of processors in a Chip Multi-Processor design.

Section 3.1.6 describes the difficulty of scaling the mechanisms that ensure

cache coherence.

48 CHAPTER 3. MAINTAINING STATE

3.1.2 Immutable Memory

When only immutable data is used to represent shared state, the amount of shared
data that is either read or written to main memory by a program is independent
of the number of processors involved in its concurrent execution.

A concurrent program should maintain both speculative and shared state
immutably in memory. Immutable values are written just once so immutable
data satisfies the requirement that it does not increase memory bandwidth of a
program. Immutable values cannot change so cached copies are always coherent.

Immutability is a memory usage convention. A memory location is said to
be immutable if its value is written just once and cannot be changed thereafter.
Prior to writing the value the memory location cannot be reached by the program,
so the program cannot read memory locations that have not already been written
and cannot write to those locations that have already been written.

An immutable object is an object whose state cannot be modified once it has
been created. It can be regarded as a set of constant values. An object reference
associates an identifier with a location in memory where the object can be found.
An immutable object cannot be modified but a reference to it may be mutable, so
an identifier can be associated with different versions of an immutable object by
modifying its reference. A concurrent program that maintains state immutably
requires mutable memory to maintain both unshared state and shared references
to immutable objects.

Immutable objects can be relocated while retaining the property of immutabil-
ity. To relocate an immutable object in memory a copy of the object is made
at another location. Values can be inserted into and deleted from an immutable
object during the copy operation. It is possible to create an immutable object
with identical properties to any mutable object by implementing all of the ob-
ject’s mutating methods as constructors of new copies of the object. A serial
program that maintains state in immutable objects may have a different memory
bandwidth requirement from a similar program that uses mutable objects but
in many cases immutable objects can be implemented just as efficiently as their
mutable counterparts. It is not necessary to perform a full copy of an object
every time a mutating method is called to preserve the property of immutability.

Immutable data is written just once so an immutable value written spec-
ulatively does not need to be written again when it is shared. A concurrent

program that maintains shared state immutably scales without increasing its

3.1. SPECULATIVE STATE 49

memory bandwidth requirement as the total amount of data both written to and
read from memory is unaffected by the number of processors participating in its
execution.

An immutable object can never go stale in cache because its value cannot be
changed so it is not necessary to ensure that the cached copies of an immutable
object are coherent. However, a mechanism to enforce cache coherency is required
to ensure that all processors observe an up to date copy of the reference to the
immutable data.

Immutable data frees Chip Multi-Processors from the scaling restrictions of
cache coherency in two ways. Firstly, it is not necessary for the processor design to
enforce a cache coherency protocol for all memory locations, allowing the design
to be more scalable. Secondly, the cache pathologies of cache coherency misses
and false sharing do not occur and this increases the effective memory bandwidth
of the cache.

3.1.3 Memory Bandwidth

A program executing in parallel on two processors requires twice the memory
bandwidth of an equivalent program executing on one. The bandwidth require-
ment for processors executing general applications is around 1GB/s per core.
Desktop and server Chip Multi-Processors use single or dual DDRx memory sys-
tems. The maximum bandwidth of such an arrangement is less than 10GB/s.
Jacob offers a reason why four physical core Chip Multi-Processors are common
and eight core systems have yet to appear which is that, unless the memory sys-
tem is upgraded, an eight core system would perform no better than a four core
system [Jac09].

A solution to the problem of restricted bandwidth is to increase the memory
bandwidth of the processor. Historically, memory bandwidth has increased more
slowly than processor frequency for physical reasons, such as the difficulty of
scaling the number of off-chip pins. Increasing the number of off-chip pins is
challenging because of their energy requirements and because it increases the
complexity of printed circuit boards. Currently, processor frequency is static
and the number of processors on a chip is increasing. Jacob describes why the
number of concurrent memory operations that a processor’s memory controllers
can support is much harder to scale than the number of processors on the chip

[Jac09].

90 CHAPTER 3. MAINTAINING STATE

Memory bandwidth can be increased to match the number of cores, but at
significant design cost. A Chip Multi-Processor saturates its memory subsystem
once the number of cores multiplied by the bandwidth of the program executing
on them reaches a maximum sustainable bandwidth. Jacob finds that the 32 core
Niagara Chip Multi-Processor has a memory subsystem that saturates at 25GB/s
so, the Niagara processor has a memory bandwidth of less than 1GB/s per core
[Jac09].

Memory bandwidth is limited by physical factors and dramatic increases in
bandwidth are unlikely in the near future. Consequently, proposals to support
concurrent programming should focus on decreasing the effective memory band-

width requirement of programs.

3.1.4 The effect of speculation

Transactional Memory systems take several different approaches to storing spec-
ulative state. Each of these approaches has its own relative merits, which are dis-
cussed in detail in the main reference book on Transactional Memory [HLR10].
However, each approach involves writing values to more than one location or
writing additional meta-data to memory. The additional memory writes tend to
increase the memory bandwidth requirement of the program.

Maintaining state in a recovery log is a common technique in Software Trans-
actional Memory systems. Logging state increases memory bandwidth as each
shared value must be written to main memory at least twice. Typically, a system
will write the old value of a location to a log before storing the new value. For
example, the logTM Software Transactional Memory system maintains the com-
mitted state of memory locations that have been written speculatively in a log
[MBM*06]. This technique is known as eager versioning. The amount of state
written to the log is equal to the amount of speculative state written by the pro-
gram. The latency of a memory write operation can be reduced by caching the
log but, eventually, both the old and new values must be written to main memory
as a result of the operation thus increasing the memory bandwidth requirement
of the program.

Maintaining speculative state in cache is a technique adopted by some Hard-
ware Transactional Memory systems. For example, the Hardware Transactional
Memory proposal of Herlihy and Moss maintains speculative state in a dedicated

transactional cache [HM93]. Speculative values are eventually written to main

3.1. SPECULATIVE STATE o1

memory in addition to committed values so the caching of speculative state in-
creases the memory bandwidth of a program. When cache contains both the
speculative and committed state of an object the number of distinct objects that
it can contain is reduced so the caching of speculative state also increases the
memory bandwidth of a program by reducing the effectiveness of cache.

Maintaining speculative state in a buffer is a technique adopted by many
Hybrid and Software Transactional Memory systems. Buffering shared state in-
creases memory bandwidth because objects must be copied when they are written.
Typically, a buffering Transactional Memory system will copy an entire object
to a new location when one of its fields is modified speculatively. The operation
usually has low latency because it occurs in cache, but the whole of the copied
object must eventually be written to main memory as a result of the operation.
Object copying increases the memory bandwidth of the program.

Each of these techniques require additional bookkeeping information to ensure
the correct concurrent execution of the program. This information will eventually
be written to main memory, increasing the effective memory bandwidth of the
program.

Speculative execution necessitates that some transactions will be aborted and
the work they did will be wasted. Memory operations performed by this wasted
work also increases the effective bandwidth of the concurrent program.

Transactional Memory increases the memory bandwidth requirement of the
program. In many cases the overhead of buffering speculative state is the main

factor limiting the speed-up that can be achieved from the concurrent execution
[O1u07].

3.1.5 Moving the bottleneck

The number of processing cores that it is possible to fit into a single Chip Multi-
Processor is expected to increase in future. As the number of cores increases
so does the potential speed advantage of concurrent programs over their serial
counterparts. Concurrent programming is universally accepted to be difficult but
at some point the speed advantage of concurrent execution will make the effort
of writing concurrent programs worthwhile.

This familiar argument is based on two questionable assumptions. Firstly, that
the difficult of writing concurrent programs is a major obstacle to the adoption of

concurrent programming. Secondly, that a concurrent program has the potential

52 CHAPTER 3. MAINTAINING STATE

to execute faster on a Chip Multi-Processor than the equivalent serial program.

In many application programming environments, such as the computer games
industry, there are enormous financial incentives to improve concurrent perfor-
mance. In such environments no programmer effort is spared in utilising concur-
rent execution. The difficult of writing concurrent programs can be overcome by
applying many programmers to the task and requiring each of them to think very
hard. The real problem is that their efforts are so rarely rewarded by improved
performance of the program.

The elapsed execution time of a memory-bound program on a Chip Multi-
Processor is equal to or greater than the serial execution time, no matter how
many processors are applied to the problem. Only execution-bound programs
have the potential for a concurrent implementation executing on a Chip Multi-
Processor to execute faster than a serial implementation.

For execution-bound programs there is a potential speed-up from concurrent
execution. The first obstacle to realising this speed-up is that executing on mul-
tiple processors increases the bandwidth of the program causing it to become
memory-bound. The second obstacle is that instrumentation to support spec-
ulative execution increases the effective memory latency and bandwidth of the
program causing it to become memory-bound.

At best Transactional Memory converts a concurrent program with speed-up
restricted by mutual exclusion into a concurrent program with speed-up restricted
by the memory wall. Transactional Memory systems increase the memory band-
width of the program and this lowers the amount of scaling possible before a
concurrent program hits the memory wall. Programs that have a low memory
bandwidth requirement tend to scale well when the restrictions of mutual exclu-
sion are removed and these are the programs that Transactional Memory research
focuses on [PW10].

3.1.6 Cache Coherency

Small memories are generally faster than large memories because they contain
shorter wires. Processors maintain a hierarchy of caches of different sizes to
reduce memory latency and increase memory bandwidth. Chip Multi-Processors
maintain both shared and unshared caches. Typically, each processor has a small
local cache that is not shared and if a memory access cannot be satisfied from this

cache an attempt is made to satisfy it from a larger slower cache shared between

3.1. SPECULATIVE STATE 93

all of the processors of the Chip Multi-Processor.

To present a consistent view of memory to each processor a Chip Multi-
Processor implements a cache coherency mechanism which enforces a cache co-
herency protocol. A snoop-based cache coherency mechanism broadcasts the ad-
dress of memory locations that have been modified to all caches and a directory-
based mechanism records where all of the copies of a particular location reside.
Chip Multi-Processors generally enforce snoop-based protocols to avoid the ad-
ditional latency of accessing a centralised directory.

The implementation complexity of snoop-based cache coherency protocols in-
creases with processor count because the number of processors that can access a
memory bus is physically limited, so designers face the challenge of maintaining
coherency without the benefit of a single bus to serialise events [Sto06].

A coherency cache miss is a cache miss required to maintain coherency between
processor caches. When a cached location is modified by a processor all of the
copies of that location held in the local caches of the other processors must either
be updated or discarded. Typically, a snoop-based protocol regards the copies
held by the other processors as stale and marks them as invalid so the next
access to the location will result in a cache miss. Coherency cache misses tend
to increase with the processor count and are unaffected by cache size. They have
a detrimental effect on performance as each cache miss increases the effective
memory bandwidth of the program.

The messages sent between processors to maintain coherent caches are known
as coherency bus traffic. Coherency bus traffic increases with processor count
and is unaffected by cache size. Congestion on the bus has a detrimental ef-
fect on memory latency and additional bus traffic increases the effective memory
bandwidth of the program [HP06].

o4 CHAPTER 3. MAINTAINING STATE

3.2 Immutable Data Structures

To support scalable execution a concurrent system should support speculation
without increasing the effective memory bandwidth of the program. A solution
should facilitate concurrent access to shared data while requiring that values are
written to main memory only once. Immutable data is necessarily written to
main memory only once so we propose that Immutable Data Structures can act
as repositories of both speculative and shared state. Immutable Data Structures
have not previously been considered in the context of concurrent execution so
support for them must be developed before this proposal can be evaluated.

The problem is to find a mechanism for maintaining speculative and shared
state in memory. The solution should support the isolation of speculative state
and the atomic transformation of speculative state into shared state. It should
also support simultaneous access to shared state and require that data values be
written to main memory once only.

This section identifies Immutable Data Structures as candidate repositories
of shared state in concurrent systems and examines techniques for maintaining

both speculative and shared state in Immutable Data Structures.

3.2.1 Supporting Speculation

To support speculation a mechanism to isolate speculative state and permit its
atomic transformation into shared state is required. This mechanism should
afford scalable concurrency without increasing the effective memory bandwidth
of the program.

The mechanism should support the isolation of speculative state from other
functions executing concurrently. Only the process that wrote the state specu-
latively should be able to observe it. The mechanism should also ensure that a
function observes a consistent view of shared state. Consistency criteria must be
met at the point speculative state becomes shared state.

The mechanism should support the atomic transformation of speculative state
into shared state. In a Chip Multi-Processor the only mechanism for performing
an atomic action is an atomic instruction, so the transformation of speculative
state into shared state must be implemented by an atomic instruction.

Typically, atomic instructions act on only one word in memory. The atomic

transformation of isolated multi-word values into shared values can be achieved by

3.2. IMMUTABLE DATA STRUCTURES 95

atomically updating a reference to those values instead of the values themselves.
To enable atomic transformation, to shared state, speculative state should be
identified by a single reference and this reference should be modified by an atomic
instruction.

An atomic instruction typically implements a memory barrier to ensure that
any memory writes, buffered by the processor, are completed and that caches
are coherent during the execution of the atomic instruction. The memory bar-
rier ensures that the speculative state identified by the reference appears to be

atomically transformed into shared state.

3.2.2 Immutable Data Structures

Immutable Data Structures provide a solution to the problem of maintaining
both speculative and shared state. Paths within an Immutable Data Structure
can be isolated until the mutable reference to the data structure is modified by an
atomic instruction so functions acting on Immutable Data Structure can benefit
from isolation and atomicity provided by the structures themselves.

Figure 3.1 illustrates the insertion and removal of an element in an immutable
binary tree. The functions cause a new path to be created within the data
structure but do not change any of the existing values. A version of a data
structure is identified by a mutable reference. The data structure does not change
per se. Instead, a new version is created by copying data and modifying the

reference.

3.2.3 Immutability and Concurrency

In this section we describe how certainty that shared data within an Immutable
Data Structure is immutable enables a program to access it concurrently.
Immutable Data Structures provide a medium for maintaining immutable
shared state within the data structure itself. Immutable Data Structures also
provide a medium for maintaining isolated speculative state, in the form of the
values written by an access function. The mutable reference to the data structure
is modified by an atomic instruction and this causes the speculative state, created
in isolation by the access function, to be transformed atomically into shared state.
Concurrent accesses to mutable data structures must be coordinated for two

reasons. Firstly to protect the integrity of the data structure itself and secondly

o6 CHAPTER 3. MAINTAINING STATE

’—r‘

]

Figure 3.1: Insertion and deletion from an immutable binary tree. The
shaded vertices represent the path created by the operation. An ellipse with
a double border represents a mutable reference to a version of the Immutable
Data Structure. Version VO of the immutable binary tree contains the elements
{r,s,t,u,v, w}.

(a) Insertion of an element ¢ into an immutable binary tree creates version V1
containing the elements {q, 7, s,t,u,v,w}.

(b) Removal of the element w from an immutable binary tree creates version V2
containing the elements {r, s, t, u,v}.

3.2. IMMUTABLE DATA STRUCTURES o7

to ensure the correct semantic order of operation. An Immutable Data Structure
distinguishes between the structural consistency criteria of the data structure and
the semantic consistency criteria of the application data. However, Immutable
Data Structures do not offer a mechanism for ensuring the correct ordering of the
effects of concurrent operations. A mechanism to ensure this ordering is presented

in subsequent chapters.

o8 CHAPTER 3. MAINTAINING STATE

3.3 Path Copying

We wish to determine the appropriate technique for implementing Immutable
Data Structure in a concurrent execution environment. In a serial execution en-
vironment ease of implementation and performance are important considerations.
However, in a concurrent execution environment ensuring the consistency of the
data structure is the primary consideration. This section reviews the techniques
for implementing Immutable Data Structures described in the literature.

The main contribution of this section is an examination of techniques for im-
plementing Immutable Data Structures. This section focuses on the applicability

of each technique in a concurrent execution environment.

3.3.1 Implementing Immutable Data Structures

Techniques for implementing Immutable Data Structures are described in the
seminal work of Driscoll [DSST86]. This section examines how a complete im-
mutable binary tree, with values on leaves, can be implemented using these tech-

niques.

Full copying

The easiest technique for making a data structure immutable is to copy the entire
data structure including the application values when any change is made. This
technique is called naive copying. A similar technique called full copying causes
the structure to be copied while leaving the application values in place.

Figure 3.2 illustrates how the full copy technique is used to maintain a com-
plete immutable binary tree.

The children of an immutable node should be copied before the node itself.
Typically, a full copy of an immutable tree is implemented using a post-order
traversal of the nodes. The performance overheads of full copying are significant

so the technique has received little attention.

Path copying

The copying of the data structure can be restricted to the copying of those nodes
that are modified by the operation. A path is a set of connected nodes linking the

root with one or more leaves. A path copy operation creates a new path within

3.3. PATH COPYING 99

\
EREREEER HEER
P
1] L L L]
oJOoJololo 6%00

(c) (d)

Figure 3.2: Full copying technique.

(a) Original complete binary tree.

(b) A full copy duplicates the data structure. The nodes created during the
operation are shaded. Each node of the data structure is copied to create a new
structure.

(c) The leaf e is inserted into the data structure by copying all of the nodes and
adding a new node.

(d) The leaf d is removed from the data structure by copying all of the nodes
except the parent of the leaf being removed.

60 CHAPTER 3. MAINTAINING STATE

(a) (b)

.. e
ONOIONCO d@

| [T

uA(nS

(c) (d)

ua
e

Figure 3.3: Path copying technique.

(a) Original complete binary tree.

(b) A leaf to root path copy. The nodes created during the operation are shaded.
Each node on the path is copied to make a new data structure that has nodes in
common with the original data structure.

(c) The leaf e is inserted into the data structure by copying the path to a leaf
and adding a new node.

(d) The leaf d is removed from the data structure by copying the path to the
parent of a leaf.

3.3. PATH COPYING 61

the data structure. A path copy operation may create a new path by copying an
existing path from leaf to root or by selectively copying nodes in some other way.
Figure 3.3 illustrates how root to leaf path copying technique is used to main-
tain a complete immutable binary tree.
In the context of functional programming languages an Immutable Data Struc-
ture maintained using the path copying technique is called a purely functional
data structure.

Section 3.3.3 discusses path copying in more detail.

Fat node

The fat node technique is based on the idea of recording changes to the data
structure within the nodes themselves. The nodes modified by an operation
are regarded as alternatives. Fat nodes can be implemented either by a list of
alternative values for a node or by a list of alternative values for each pointer
within a node.

Figure 3.4 illustrates how the fat node technique is used to maintain a com-
plete immutable binary tree.

The fat node technique can be implemented by augmenting a node with an
additional reference. If this reference is null then the node is the most recent and
its children are interrogated to determine the path. If the reference is not null
then the node or pointer has been superseded by a new value so the reference
should be followed instead.

An access function determines the correct alternative based on a version num-
ber. Driscoll describes how alternatives can be associated with a range of version
numbers [DSST86].

The fat node technique requires less copying than the path copy technique,
because a path copy copies all of the nodes that the fat node copies together with
additional nodes to the root.

The fat node technique is fairly easy to implement. However, long lists of
alternative nodes can build up and these lists can degrade performance. To
improve performance the lists can be split using the path copying technique but
this comes at the cost of additional implementation complexity.

The fat node technique has received attention as the basis of maintaining

persistent data structures in computational geometry.

62 CHAPTER 3. MAINTAINING STATE

Shd Sbe

(a) (b)
L

b

() (d)

Figure 3.4: Fat node technique.

(a) Original complete binary tree.

(b) A node is added to the fat node. New nodes are created as needed. The
nodes joined by the horizontal dotted line are regarded as part of a single fat
node. The fat node is a list of past values for the node. The nodes created during
the operation are shaded.

(c) The leaf e is inserted into the data structure by the creation of an alternative
value for the parent of the leaf c.

(d) The leaf d is removed from the data structure by the creation of an alternative
value for its grandparent.

3.3. PATH COPYING 63

Node copying

The node copying technique is similar to the fat node technique except that a
finite number of alternatives are maintained within a node instead of in a list.
These can either be alternative values for pointers or alternative values for the
node. When the node becomes full it may be split. Cole describes the node
copying technique in relation to persistent data structures [Col86].

Figure 3.5 illustrates how the node copying technique is used to maintain a
complete immutable binary tree.

A node contains alternative values for the references to its children which are
initialised to null and used if set. Each node in the data structure contains a
set of alternative values. Typically, the alternative pointers are set to null when
the node is created and subsequently modified when a path is modified. When a
node becomes full it is split into multiple nodes by creating new paths to nodes
in a similar manner to the path copying technique.

The path copying technique requires that a new path containing copies of all
the nodes from leaf is created during each operation, whereas the node copy-
ing technique copies only part of the path, so the node copying technique often
performs better than the path copying technique. Typically, two alternative val-
ues are stored in a single cache line so the overhead of checking whether the
alternative value is in use is low.

The node copying technique is more difficult to implement than the fat node
technique because node splitting requires that the path copying technique must
also be implemented.

The node copying technique has also received attention as the basis of main-

taining persistent data structures in computational geometry.

3.3.2 Supporting Concurrent Access

It is useful to distinguish between an immutable memory location and one that
is singly-assigned. An immutable memory location is always observed to contain
a constant value and it is unreachable until it is assigned. A singly-assigned
memory location can be observed to contain either no value or a value that is
constant once set.

In the context of concurrent execution an immutable memory location can be

safely written because it is unreachable in its uninitialised state, whereas a shared

64 CHAPTER 3. MAINTAINING STATE

S s
L] ARRNJNNEN

OB SO

(a) (b)

s

£ ‘/_E

LIV LT
<T@

Figure 3.5: Node copying technique.
(a) Original complete binary tree.
(b) A node is copied. The nodes affected by the operation are shaded. A node
contains a left and right pointer and an alternative left and right pointer. In
order to find a leaf a test is done to determine whether the alternative pointers
are null and if not the new path is taken.
(c) The leaf e is inserted into the data structure by using the alternative right
pointer of the parent of the leaf c.
(d) The leaf d is removed from the data structure by using the alternative right
pointer of its grandparent.

() (d)

3.3. PATH COPYING 65

singly-assigned memory location must always be written by an atomic instruction
to prevent race conditions.

An immutable memory location can be safely cached by multiple processors
without requiring any mechanism to ensure cache coherence, whereas a singly-
assigned memory location may not because the location can be accessed and
cached in an uninitialised state and is, in effect, mutable. A cache coherency
mechanism is required to ensure that all processors observe the correct value of
a singly assigned memory location.

The fat node and node copying techniques both require that a singly-assigned
memory location is checked for a null value within the data structure. The fat
node technique checks whether the alternative value is null and the node copying
technique checks whether a reference to an alternative node is null. In a concur-
rent execution environment the fat node and node copying techniques require that
these shared singly-assigned locations must be modified by an atomic hardware
instruction. Coherent caches and memory barriers are also required to support
these singly-assigned values. These restrictions mean that the fat node and node
copying techniques are not suitable for implementing Immutable Data Structures
in a concurrent execution environment.

The full copy and path copy techniques do not rely on singly-assigned memory
locations. In the context of concurrent execution the path copying and full copy-
ing techniques share the advantage, over the other techniques, that modifications
to the data structure can be made to appear atomic because a new version of
the data structure only becomes visible to other processors when the root node
is written. They also share the advantage that all values are immutable so they
can be cached in processor-unique caches without requiring that these caches

implement a coherency protocol.

3.3.3 Path copying transformations

Okasaki relates trees to number systems [Oka98]. We can use this relationship to
show that the path copying technique can be used to transform the topology of
an immutable binary tree arbitrarily.

Let S be the set of expressions {{a.b.c.d.e.f} ,{a.(b.c).d.e.f},...} in which the
letters a to f are in the same order. The set S corresponds to the set of possible
topologies of the binary tree in which the leaves are in the same order from left

)

to right. If the binary operator ’.” is regarded as being associative then all of the

66 CHAPTER 3. MAINTAINING STATE

Figure 3.6: Bracket operations.
(a) A degenerate tree TO corresponding to the expression {a.b.c.d.e.f} in which

the binary operator ’.” acts on the values a to f, which are represented by the

leaves in order from left right.

(b) A tree T1 corresponding to an expression in which the brackets have been
re-arranged to cause some operations to take precedence over others. The oper-
ation acting on b and ¢ takes precedence and the expression can be written as

{a.(b.c).d.e.f)}.

expressions in the set S are equivalent. This topological equivalence is the basis
of tree balancing.

For any expression in S there is a transformation, essentially removing brack-
ets, that maps it onto the expression {a.b.c.d.e.f}. Similarly, for any expression in
S there is a transformation, essentially adding brackets, that maps the expression
{a.b.c.d.e.f} onto it.

Figure 3.6 illustrates bracket operations acting on a degenerate tree.

For any tree topology there is a transformation that maps it onto an equivalent
degenerate tree. Similarly, for any tree topology there is a transformation that
maps the degenerate tree onto it. These transformations can be broken down
into a finite sequence of steps, each of which corresponds to adding or removing
brackets from the expression.

By using a similar informal argument we can show that a value can be added

3.3. PATH COPYING 67

to or removed from an expression and that this corresponds to the insertion and

deletion of leaves in a degenerate tree.

Implementing topological changes using path copying

The operations that add or remove brackets from an expression correspond to
topological transformations of the tree. These transformations can be imple-

mented using the path copying technique.
Figure 3.7 illustrates bracket operations implemented by path copying.

Given a degenerate tree it is possible to transform it into an equivalent tree
with any topology without altering the original by using the path copying tech-
nique. Similarly, it is possible to transform a tree with any topology into an

equivalent degenerate tree without altering the original.

It is interesting to note that these trees really are equivalent. The trees TO
and T1 in figure 3.6 are equivalent in the vague sense that an in-order traversal
returns the same values in the same order, whereas the trees T2 and T3 in figure
3.7 are equivalent because the same leaves are shared by both trees, they are in

the same order and they exist at the same moment in time.

Implementing structural changes using path copying

The operations that add or remove values from an expression correspond to struc-

tural transformations of the tree.

A value can be inserted into an expression at any point and correspondingly
a leaf can be inserted into the degenerate tree at any point to create a new
degenerate tree. A value can be removed from an expression at any point and
correspondingly a leaf can be removed from a degenerate tree at any point to

create a new degenerate tree.
Figure 3.8 illustrates how these transformations can be implemented using
the path copying technique.

By using the path copying technique it is possible to make structural changes
to a tree, by inserting or removing an arbitrary number of leaves, without altering

the original.

68 CHAPTER 3. MAINTAINING STATE

Figure 3.7: Immutable add bracket and remove bracket operations.

(a) A tree corresponding to an expression in which the precedence of one operation
has been elevated. Degenerate tree T2 representing the expression {a.b.c.d.e.f}
and the tree T3 representing the expression {a.(b.c).d.e.f}.

(b) A tree corresponding to an expression in which the precedence of one operation
has been reduced. Tree T4 representing the expression {a.(b.c).d.e.f} and the
degenerate tree T5 representing the expression {a.b.c.d.e.f}.

3.3. PATH COPYING 69

Figure 3.8: Immutable insert and delete operations.

(a) Insertion of an item into the degenerate binary tree. Degenerate tree T6
representing the expression {a.b.c.d.e.f} and the degenerate tree T7 representing
the expression {a.b.c.X.d.e.f}.

(b) Removal of an item from the degenerate binary tree. Degenerate tree T8
representing the expression {a.b.c.d.e.f} and the degenerate tree T9 representing
the expression {a.b.d.e.f}.

70 CHAPTER 3. MAINTAINING STATE

T11 T10 T12

L TS

Figure 3.9: The leaf to root path copying technique is distinct from other
path copying techniques because it preserves the position of nodes relative to the
root.

A new leaf A is added to tree T10 by a root to leaf path copy to create tree T11.
The path copy preserves the position of nodes that are not copied relative to the
root. For example, the node C is the right child of the root’s left child in both
versions.

A new leaf B is added to tree T10 by another path copying technique to create
tree T12. The relative positions of the existing nodes are not preserved.

3.3.4 Previous work

A leaf to root path copy operation preserves the position of existing nodes relative
to the root, but not all path copy operations preserve the relative position of
existing nodes.

The literature does not make a distinction between a leaf to root path copy
or the creation of a new version through the construction of a new path in some
other way. Driscoll describes path copying without detailed consideration of how
it is achieved [DSST86]. Okasaki describes many copying optimisations which are
not leaf to root copies [Oka98].

Figure 3.9 illustrates the distinction between leaf to root path copy and other

path copying techniques.

3.4. BINARY TREES 71

3.4 Binary Trees

There are no publicly available libraries of Immutable Data Structures imple-
mented in imperative programming languages. This section describes the design
of a general purpose Immutable Data Structure. This flexible design can be spe-
cialised to implement a variety of ADTs. The topology of the data structure is
hidden from the program so it can be balanced independent of the ADT that it

implements.

In a functional programming language immutable values are maintained in
purely functional data structures, such as those described by Okasaki [Oka04].
Purely functional data structures might appear to be a starting point for devel-
oping Immutable Data Structures. However, functional programming languages
permit the expression of a function in terms of immutable data, whereas the eval-
uation of a function typically relies on mutable data. In some cases a functional
programming language compiler implements a purely functional data structure
as a mutable structure. In a concurrent execution environment it is the actual
immutability of values used during the execution that matters rather than the
appearance of immutability presented to the programmer by the programming

language.

The main contribution of this section is the development of a general Im-
mutable Data Structure that can be used to maintain speculative and shared
state. This section focuses on design flexibility and subsequent sections show

how the structure can be specialised to conform to a variety of ADTs.

3.4.1 A flexible Immutable Data Structure design

A general purpose Immutable Data Structure should be flexible enough to present
a variety of familiar ADTs to the program. Design flexibility is a vague term but
we take it to mean three things. Firstly, we prefer the simplest most general
solution. In practice, this means designs that contain no special cases. Secondly,
we prefer to hide details of the data structure implementation from the appli-
cation. In practice, this means making details of the topology inaccessible to
the ADT. Thirdly, we delay performance optimisations until the final stages of

implementation.

72 CHAPTER 3. MAINTAINING STATE

3.4.2 The Canonical Binary Tree

The proposed solution is an immutable binary tree that can be specialised to
conform to a particular ADT. We call this structure the Canonical Binary Tree
because it is an immutable binary tree reduced to the simplest and most signifi-
cant form possible without loss of generality. This section states the decisions on

which the design of the Canonical Binary Tree is based.

Why a binary tree?

A tree in which each node has many children can be shallower than a binary tree
containing the same number of leaves. It is common for purely functional data
structures to be based on shallow trees so that access times are minimised.

For example, the Clojure language implements a number of purely functional
data structures internally. These structures are based on a 32 bit hash array
mapped trie. Each node of the trie has up to 32 children so the structure is
shallow and permits fast access. Bagwell describes the implementation of these
data structures in detail [Bag01]. A hash array mapped trie is a complex structure
optimised for good performance on modern computer hardware, but it is difficult
to implement. Clojure offers just a few Immutable Data Structures as primitives
and the language offers no control over the implementation of the underlying
data structure. At the time of writing a new ADT is under development by the
Clojure community. Hickey describes the performance benefits of the hash array
mapped trie and the significant work involved in implementing ADTs based upon
it [Hicl1].

In a concurrent execution environment access time is not the most important
design consideration and optimisation can be deferred to a later stage in the
design process. The binary tree has the simplest possible structure and offers the

greatest design and implementation flexibility.

Why associate values exclusively with leaves?

A Canonical Binary Tree contains both structural information and application
values. Structural information is necessarily associated with the nodes but appli-
cation values can be associated either exclusively with leaves or with both leaves
and nodes, which we refer to as vertices. A tree that associates application values

exclusively with leaves can hide its topology.

3.4. BINARY TREES 73

For example, the priority queue ADT associates a priority with an applica-
tion value. It is common for a priority queue to be implemented as a binary
heap in which both a priority and an application value are associated with each
vertex. Both the ephemeral priority queue considered by Sedgewick [Sed98] and
the purely functional priority queue considered by Okasaki [Oka04] associate an
application value with a vertex because a vertex can be accessed more quickly
than a leaf. When a priority queue is implemented by a binary heap the high-
est priority vertex can be accessed in O(1) time and insertion into the queue
takes O(loge(n)) time. However, when a priority queue is implemented by a tree
with application values associated exclusively with leaves the access time for all
operations is O(loga(n)).

The Canonical Binary Tree associates application values exclusively with

leaves. All functions access leaves so the amortised access time is:

O(logz(n))

This amortised access time is identical to that of an ephemeral binary tree with

application values maintained exclusively by leaves.

Why separate keys and annotations?

A key is an argument to a function of a data structure, whereas a vertex anno-
tation is a value used to navigate a path through the tree. Usually, annotations
and keys are of the same type and annotations are accessible to the program.

The Canonical Binary Tree design separates the concepts of keys and anno-
tations. Annotations are not accessible to programs so the topology of the tree
can be altered independent of the ADT being implemented.

For example, an associative data structure in which all values are reachable,
such as a map, is typically distinguished from one in which not all application
values are reachable, such as a deque. However, the front and back functions of
a deque can be regarded as a query function that takes as its access argument a
binary key indicating which end of the queue it acts upon.

By separating the concept of the annotation from the key all ADTs can be
regarded as associative. The Canonical Binary Tree treats all ADTs as associative

and hides the details of the annotations from the calling program.

74 CHAPTER 3. MAINTAINING STATE

Why fix the comparison function?

The function that determines the annotation of a node given the annotations of
its children is referred to as the annotator and the operation that determines
which of the children of a node is on the path is called the comparison. The
annotator function specialises the Canonical Binary Tree so that it conforms to a
particular ADT. The Canonical Binary Tree uses the same comparison function
for every ADT.

For example, a path through a Binary Search Tree can be determined by a
comparison function that causes the right child of a node to be selected if the
access argument is greater than its annotation. This causes an in-order traversal
to return application values in ascending order of the access argument used to
insert them. The order of the elements returned by an in-order traversal can be
reversed either by using a different comparison function or by inserting the values
using a different annotator.

The Canonical Binary Tree fixes the comparison function to reduce the amount
of information that must be specified to specialise it to conform to a particular
ADT.

Why maintain a sentinel leaf?

There is a distinction between a data structure that is empty and a data structure
that does not exist. This is particularly important for data structures that are
accessed concurrently.

An empty Canonical Binary Tree contains a sentinel leaf which is always
present within the tree. We adopt the convention that the sentinel is always the

right-most leaf of the tree.

Which access functions should the Canonical Binary Tree implement?

The Canonical Binary Tree implements only the access functions: create(), insert(),
query(), delete() and empty(). The interface functions required by common
ADTs, such as Top(), Front() etc. are implemented by wrapper functions.

The create() function creates a new data structure containing only the sen-
tinel. Its parameters specify the appropriate sentinel annotation for the ADT
being implemented and an application value. The function allocates storage for

the root and returns a reference to it. The root is initialised with a reference

3.4. BINARY TREES 75

to the sentinel. References to the root and the sentinel are maintained by the
program.

The query() function returns an application value. The function accepts: an
access argument, a reference to the root and a reference to the sentinel as its
parameters. It is ADT agnostic and does not require a specialising function as a
parameter. Its access argument will always match a single leaf within the tree.
When the tree is empty it returns the application value of the sentinel.

The insert() function always succeeds in inserting a leaf into the tree and
has no return value. The function accepts: a specialising annotator function, an
access argument, a reference to the root and a reference to the sentinel as its
parameters.

The delete() removes a leaf from the tree unless it is empty and has no return
value. The function accepts: a specialising annotator function, an access argu-
ment, a reference to the root and a reference to the sentinel as its parameters.
The sentinel cannot be deleted and an instance of the Canonical Binary Tree
persists until the program terminates, so there is no function to delete an entire
data structure.

The empty() function is a macro that compares the address of the sentinel
with the address of the root node, both of which are maintained by the program

and passed as parameters.

3.4.3 Previous work

Sedgewick provides a comprehensive guide to important ephemeral data struc-
tures [Sed98]. Okasaki provides a comprehensive guide to purely functional data
structures [Oka98].

Tarjan describes methods of amortised time analysis called the Banker’s and
Physicist’s methods [Tar85]. Okasaki adapts these analyses to purely functional
data structures [Oka98]. The Banker’s method associates credits and debits with
short and long paths in the data structure respectively. The analysis balances the
debits and credits to determine the effective cost of an operation. The Physicist’s
method describes a function mapping each element in the data structure onto a
real number called its potential. The analysis balances the positive and negative
potential of accesses to particular elements to determine the effective charge of
an operation. These analyses are more complicated than ours because the ADTs

presented are tightly coupled to the data structures that implement them.

76 CHAPTER 3. MAINTAINING STATE

Okasaki focuses on the path copying technique and the diagrams in the book
imply that the programmer should visualise path copying when thinking about
the structures. However, in a functional programming language a data structure is
specified at a high level of abstraction and how the language compiler implements
the structure is not specified. In some cases path copying is used by the generated
code but this is compiler dependent. A structure that appears immutable when
described in a functional programming language might be compiled to a mutable

structure to improve performance.

Moss describes a set of benchmark applications that can be used to assess the

performance of purely functional data structures [Mos99].

Prior to this thesis there were no publicly available libraries of Immutable
Data Structures implemented in an imperative programming language. We do
not know of any previous attempts to produce such a library.

Persistent Data Structures implemented in an imperative programming lan-
guage are typically bespoke solutions to problems in algebraic geometry or version
control. Sarnak describes how a persistent data structure can be used to solve the
planar point location problem in computational geometry [ST86]. Pluquet de-
scribes how to construct a partially persistent data structure in C++ to solve the
same planar point location problem [PLMWO08]. These persistent data structures

use the fat node technique so they are not immutable.

Parrish describes a class based implementation of persistence in C++ [PDCT98].
The problem that Parrish addresses is one of transforming a general application
class into a persistent class. The resulting data structure is immutable but new
versions can only be created by copying the entire object.

The C+4 STL contains several associative ADTs that are usually imple-
mented by a balanced red-black tree [Jos99]. The STL separates the concerns of
the ADT from those of the data structure that implements it. The STL separates
the ADT from the balancing process. STL iterators separate the ADT from the
process of traversing the tree. STL allocators separate the ADT from the memory

management processes so the data structure implements a container.

Hinze describes how a similar separation of concerns can be applied to a
purely functional data structure [HP05]. Hinze describes a general technique
for creating Immutable Data Structures in a functional programming language.
This technique has not previously been explored in the context of imperative

programming. Hinze reduces the amortised access time of a binary tree by adding

3.4. BINARY TREES 77

a central spine, to create a so-called finger tree. However, the spine is just an
access time optimisation. Hinze describes how a specialising function can be used
to make an immutable binary tree conform to a particular ADT. Hinze shows how
monoid functions, which are associative functions with an identity, can be used
to specialise a binary tree.

A finger tree is statically specialised to conform to a particular ADT, whereas
the Canonical Binary Tree is dynamically specialised. The set of access functions
associated with each structure implemented by a finger tree is ADT dependent,
whereas the Canonical Binary Tree presents a basic set of functions that can be
adapted to implement a particular ADT.

Hinze’s design is based on an Immutable Data Structure that requires both a
function to determine the annotation of a node given its children and a comparison
operation to determine the path, whereas the Canonical Binary Tree requires only
one specialising function.

Finally, Hinze does not make a distinction between an empty tree and a non-
existent tree, whereas the Canonical Binary Tree maintains a sentinel to make

this distinction.

78 CHAPTER 3. MAINTAINING STATE

3.5 Abstract Data Types for Immutable Data

The design of a data structure is normally tightly coupled with the ADT being
implemented. The property of immutability permits the development of a gen-
eral technique for implementing an ADT. The technique has not previously been
explored in the context of an imperative programming language. The Canon-
ical Binary Tree can be made to conform to many different ADTs by specify-
ing a specialising function as a first order parameter. Functions acting on the
Canonical Binary Tree, including those supporting concurrent execution, can be
implemented independent of the ADT.

The main contribution of this section is the development of an Immutable
Data Structure that separates the concerns of the structure from those of the
ADT to which it conforms. This section focuses on techniques for specialising
the Canonical Binary Tree so that a mechanism to allow concurrent access can
be implemented independent of the ADT.

3.5.1 Priority Queue

A priority queue associates a priority with a data value so that the value asso-
ciated with the highest priority can be recovered. Priority queues are used to
schedule operating system tasks and to solve the selection problem, which is to
return the kth largest element from a set of elements.

A priority queue has a Push() function to insert a value with an associated
priority into the structure. It has a T'op() function that returns the value with the
highest priority and a Pop() function that removes that value. It is conventional
to regard low numbers as high priorities.

Hinze describes an implementation of a purely functional priority queue based
on a min-tree [HP05]. The min-tree is a type of tournament tree in which the
annotation of a leaf is the priority and the annotation of a node is the minimum
annotation of its children. This property causes the annotation of the root node
to be equal to the lowest priority of any leaf. A path from the root to the leaf
with the highest priority is found by examining the annotation of the root node
and then repeatedly choosing the child node with matching priority until a leaf
is reached.

Figure 3.10 illustrates an example of a min-tree.

The min-tree corresponds to a mathematical expression in which the minimum

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 79

2 1
2 5 1 3
6 1
10 2 6 7 5 9 12 3 14
g b f i h d e C a j

Figure 3.10: Example Min-tree containing the priority value pairs {1
€2+ b,3+— a,5— h6— f7—1i99— d10— ¢,12 — ¢, 14 — j}. The
shaded vertices illustrate the path to the value with the highest priority.

(a) (b) ()

Figure 3.11: Associativity property of a min-tree. Min-trees with differ-
ent topologies maintain the property that the root node is annotated with the
minimum annotation of any leaf. The shaded vertices illustrate the path to the
highest priority element.

30 CHAPTER 3. MAINTAINING STATE

VO V1

5«530 b

=

2 3 4

=
N
w
I

(a) (b)

Figure 3.12: Insertion and removal of an element in a min-tree.

(a) Insertion of an element into an immutable min-tree. Version V0 contains the
priority value pairs {1 — A,2 — B,3 + C,5 +— E}. The operation Push(4 —
D) creates version V1 containing the priority value pairs {1 — A,2 — B,3
C,4+— D,5— E}. The path created by the operation is shaded.

(b) Removal of an element from an immutable min-tree. Version VO contains
the priority value pairs {1 — A,2 — B,3 — C,4 — D}. The operation Pop()
creates version V1 containing the priority value pairs {2 — B,3 +— C,4 — D}.
The path created by the operation is shaded.

function is applied to the priorities. The minimum function is both associative
and commutative so the min-tree maintains the property that the annotation of a
node is equal to the minimum priority of any leaf in the subtree that it suspends,
regardless of the topology of that subtree.

Figure 3.11 illustrates the associativity property of the minimum function.

The Push() function inserts a value into the min-tree by creating a new leaf
containing the value and annotated by the priority. A new path from the root to
this leaf is created by path copying. The annotation of each node on the path is
set to be the minimum of the annotations of its children. Path copying creates
an entirely new path so the annotations of existing nodes are unaffected by the
operation. The Push() function can insert a leaf anywhere in the tree because
the minimum function is commutative.

The Pop() function removes the value with the highest priority from the
immutable min-tree by creating a new path which makes the leaf with the highest

priority unreachable. The root node is annotated with the next highest priority.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 81

Figure 3.12 illustrates the insertion and removal of an element from a min-tree.

Figure 3.13 illustrates the growth of an immutable min-tree. Successive leaves
are added through a process of path copying. The properties of the min-tree are

preserved by each version.

The min-tree requires that the children of a node are examined when deter-
mining the path. If the path could be determined without accessing the children
then the number of nodes accessed when traversing a path would be approxi-

mately halved.

In the context of concurrent execution the benefit of determining the path
without accessing the children is significant because nodes that are read while
traversing the path must be recorded to ensure correct concurrent execution. It

is therefore beneficial to restrict node access to those nodes actually on the path.

The min-tree requires that both the comparison and the annotator function
are supplied as specialising functions. The annotation of the root node is followed
to the leaf. This requires a special comparison operation to reach the highest
priority element because the value of the annotation of the root node must be
retained while following the path. If the path could be determined without spe-
cialising the comparison operation then the amount of information required to

describe the data structure would be reduced.

The min-tree does not specify a representation of the empty priority queue. If
a representation of the empty priority queue were specified it would be possible

to distinguish an empty priority queue from a non-existent queue.

In a typical priority queue implementation the Pop() function behaves differ-
ently when removing the last remaining element in a data structure because the
data structure is subsequently empty. In the concurrent execution environment
the status of a data structure between function calls is unknown so it is necessary
that the data structure represents and includes checks for an empty queue in

access function.

The functions Top(), Push() and Pop() are specific to the priority queue
ADT. If these functions could be specified as adaptations of the access functions
of the Canonical Binary Tree then it would be possible to abstract the priority

queue ADT from the data structure that implements it.

82 CHAPTER 3. MAINTAINING STATE

V2 V1 VO
V1 VO
VO
|
4 1 4 1 2 4
D D A B D
(a) (b) (c)
V3 V2 V1 VO
1 1 1
2
3 2
1 2 [] 3 4
C D

(d)

Figure 3.13: Animation showing the growth of a min-tree through a series
of insertions. A new version of the data structure is created by each operation.
In each case the path created by the operation is shaded.

(a) Initial data structure containing the priority value pair 4 — D.

(b) After Push(1l+— A)

(c) After Push(2 — B)

(d) After Push(3 — C).

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 83

3 2
1
¥
2 5 1 3
1 11
1
10 2 6 7 5 9 1 12 3 *
g b f i h d C a

Figure 3.14: Example Directed min-tree containing the priority value pairs
{1—e¢2—5b3—ab— h6— f7— 19— d10 — ¢,12 — c}. The
shaded vertices illustrate the path to the highest priority element. The sentinel
is the right-most leaf of the tree. The first annotation is shown above the second
annotation.

3.5.2 Directed min-tree

A new data structure, the directed min-tree, implements the priority queue ADT

and addresses the shortcomings of the min-tree.

The min-tree suffers from the problem that the annotations of both of the
children must be examined to determine the path. The directed min-tree solves
this problem by regarding the annotation as a pair of values. One value contains
the minimum value of the child annotations and the other contains an indicator

as to whether the left or right child of a node has a lower annotation value.

Figure 3.14 illustrates the annotations of a directed min-tree. The annotation
pair contains two values that we call the first and second annotations of the
node. In the figure the first annotation is shown above the second annotation.
The first annotation is calculated by subtracting the second annotation of the
left child from the second annotation of the right child. The second annotation
is the minimum of the second annotations of the children. The first annotation
of a leaf is not used and its second annotation is the priority associated with the

application value.

84 CHAPTER 3. MAINTAINING STATE

Only the first annotation of a node is examined when traversing the path.
This annotation indicates which child has the minimum second annotation. The
path to the leaf with the highest priority can be found by comparing the first
annotation of each node with zero. If it is greater than zero then the left child
is on the path, so to determine the path it is only necessary to examine the

annotations of nodes on the path.

The min-tree suffers from the problem that both the comparison operation
and the annotator function must be supplied as specialising functions, whereas
the directed min-tree requires only that the annotator function be specified. The
comparison function is regarded as a feature of the Canonical Binary Tree com-
mon to all ADTs.

The comparison function and the path determination process are the same
regardless of the ADT being implemented, so the query() function is ADT ag-
nostic. For example, the T'op() function is implemented as a Canonical Binary
Tree query() function with an access parameter of zero. Path determination
is a common feature of the query(), insert() and delete() functions so the im-
plementation of each function is simplified by making path determination ADT

agnostic.

The min-tree suffers from the problem that the annotation of the root node
must be an argument to the comparison function for every node on the path,
whereas the directed min-tree does not treat the root node as special and does

not require an annotation to be retained while determining the path.

The min-tree suffers from the problem that it does not specify a representation
of the empty priority queue, whereas the directed min-tree contains a sentinel
that can be used to distinguish an empty data structure from a non-existent data
structure. The sentinel is annotated in such a way that it cannot be removed

from the tree.

The access parameter of the insert() function identifies a leaf in the data
structure. When a new leaf is inserted to the min-tree it can be inserted either to
the left or the right of this leaf because the minimum function is commutative so
it does not matter on which side of the path the insertion takes place. However,
the Canonical Binary Tree requires that the sentinel is always the right most leaf.
To ensure this, the insert function always inserts a new leaf to the left of the path
identified by the access parameter. When the tree is created the sentinel is the

only leaf and the insert() function always inserts leaves to the left of the path,

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 85

Canonical Binary Tree specialisation

annotator(< a,b >, < ¢,d >) < d—b,min(b,d) >

tdentity <,00 >

API function Canonical Binary Tree
access function

Push(priority) insert(priority)

Pop() delete(0)

Topl) query(0)

Table 3.1: Directed min-tree implementation. The Canonical Binary Tree
can be specialised implement a directed min-tree and its access functions can be
adapted to present a priority queue ADT to the application.

so the sentinel will always remain the right-most leaf of the tree.

The sentinel must be annotated in such a way that the left child of its parent
is always chosen by the query() and delete() functions because the sentinel is un-
reachable by query() and cannot be removed by delete(). The second annotation
of the sentinel is infinity which causes its parent to have a first annotation value
of infinity so a path through the directed min-tree will include the sentinel only
when the tree is empty. In practice, the sentinel is annotated with the highest

value of the data type of the annotation.

The min-tree suffers from the problem that the ADT cannot be completely
abstracted from the data structure that implements it, whereas the directed min-
tree can be implemented by specifying access arguments to adapt the functions

of the Canonical Binary Tree.

Table 3.1 contains all of the information needed to specialise the Canonical
Binary Tree so that it implements the priority queue ADT. The annotator func-
tion returns the annotation of a node given the annotations of its children. The
identity is the annotation of the sentinel. The Push() function is implemented by
the insert() function of the Canonical Binary Tree. The Pop() function is imple-
mented by the delete() function, The value with the highest priority will always
be found by specifying an access argument of zero as the access parameter of the
delete() function. Similarly, the T'op() function is implemented by a query() with

an access argument of zero.

36 CHAPTER 3. MAINTAINING STATE

]

Figure 3.15: Example Deque containing the values {g,b, f,i,h,d,e,c,a,j}.

3.5.3 Deque

A deque data structure contains an ordered list of elements and only permits
access to those elements at either end of the list. The functionality of the data
structure can be further restricted to implement a queue or stack.

A deque is regarded as having a front and a back. The Push_front() function
inserts a value onto the front of the deque. The Front() function returns that
value. The Pop_front() function removes the value at the front of the deque. The
corresponding functions Push_back(), Back() and Pop_back() affect the back of
the deque.

Hinze describes an implementation of an immutable deque based on the or-
dering of leaves of a binary tree [HP05].

Figure 3.15 illustrates an example of a deque.

The vertices of the tree are not annotated. The front of the deque is found
by choosing the left child of each node starting from the root node. The order of
the leaves is preserved.

Figure 3.16 illustrates the insertion and removal of an element in a deque.

Figure 3.17 illustrates the growth of the immutable deque. Successive leaves
are added through a process of path copying.

The deque corresponds to an expression in which the list concatenation func-
tion is applied to the values. The concatenation function is associative so the
deque maintains the property that the annotation of a node is equal to the con-
catenation of the values of the leaves in the subtree that it suspends. It is not
necessary to annotate the nodes with the value of the concatenation. List con-
catenation is not commutative so the order of leaves must be maintained during

any transformation of the tree.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 87

V1 VO

VO V1

(a) (b)

Figure 3.16: Insertion and removal of an element in a deque.

(a) Insertion of an element into an immutable deque. Version V0 contains the
values { B, C, D, E'}. The operation Push_front(A) creates version V1 containing
the values {A, B,C, D, E}. The path created by the operation is shaded.

(b) Removal of an element from an immutable deque. Version VO contains the
values {A, B,C, D}. The operation Pop_front() creates version V1 containing
the values {B,C, D}. The path created by the operation is shaded.

Special comparison functions are required to reach the front and back of the
deque. One of the comparison functions creates a path to the front of the queue
by always selecting the left child. The other comparison function accesses the
back of the queue.

This deque suffers from some of the same shortcomings as the priority queue,
it requires the implementation of access functions that are specific to the deque
ADT, it requires multiple comparison functions and it does not distinguish an

empty deque from a non-existent deque.

3.5.4 Directed deque

A new data structure, the directed deque, addresses the shortcomings of the
deque. It supports a sentinel and fully abstracts the ADT implementation from
the functions of the Canonical Binary Tree.

The nodes are annotated with a pair formed from the second annotation of
the child on the right and the second annotation of the child on the left. The first

annotation of a leaf is not used and the second annotation is zero. The second

38 CHAPTER 3. MAINTAINING STATE

V2 Vi Vo
Vi w0
VO
D c D B || C D
(a) (b) (c)
V3. V2 VI o
Al s c D

(d)

Figure 3.17: Animation showing the growth of an immutable deque
through a series of insertions. New versions of the data structure are created by
each operation. In each case the path created by the operation is shaded.

(a) Initial deque.

(b) After Push_front(C')

(c) After Push_front(B)

(d) After Push_front(A)

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 89

0 0
0 0
0 0 0 1
0 0 0
0 0
0 0
0 0 0 0 0 0 0 1
b f i h d C a
Figure 3.18: Example Directed deque containing the values

{g9,0, f,i,h,d,e,c,a}. The shaded vertices illustrate the path to the back
of the queue. The sentinel is the right-most leaf of the tree. The first annotation
is shown above the second annotation.

annotation of the sentinel is one.
Figure 3.18 illustrates an example of a Directed deque.

The sentinel is annotated in such a way that it cannot be removed from the tree
and leaves cannot be inserted to the right of the sentinel. Using the annotation
scheme three leaves are reachable. The left-most leaf, the sentinel and the leaf to
the left of the sentinel.

The Push_front(), Front() and Pop_front() functions are implemented by
the Canonical Binary Tree functions insert(), query() and delete() each called
with an access parameter of zero which causes the path to the front of the queue
to be selected. The Push_back() function is implemented by the insert() function
with an access parameter of infinity, which causes a path to the sentinel to be
selected. Insertion takes place to the left of the sentinel which causes an element
to be added to the back of the queue. The Back() and Pop_back() functions are
implemented by the query() and delete() functions with an access parameter of

one which causes a path to the back of the queue to be selected.

Table 3.2 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the directed deque ADT.

90 CHAPTER 3. MAINTAINING STATE

Canonical Binary Tree specialisation

annotator(< a,b >, < ¢,d >) <d,b>

identity < 1>

API function Canonical Binary Tree
access function

Push_front() insert(0)

Pop_front() delete(0)

Front() query(0

Push_back() insert(oco)

Pop_back() delete(1)

Back() query(1)

Table 3.2: Directed deque implementation. The Canonical Binary Tree
can be specialised to implement a Directed deque and its access functions can be
adapted to present a deque ADT to the application.

(a) (b) (c)

Figure 3.19: Associativity property of a directed deque. Directed deques
with different topologies maintain the order of their leaves. The path to the back
of the queue is shaded.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 91

2 10
14
5 7 12
2 10 14
9
10
2 3 6 7 9 10 12 14
b a h f i d g C j

Figure 3.20: Example interval tree containing the key-value pairs {0 — ¢,2 —
b,3+— a,5+— h,6— f,7—1,9—d, 10— ¢,12 +— ¢, 14 — j }. The shaded path
illustrates the mapping 9 — d.

Figure 3.19 illustrates the associativity property of the Directed deque. The
associativity property allows the topology of the data structure to be modified
without affecting the functionality provided by the ADT.

3.5.5 Map

A map is a sorted associative data structure that provides access to a set of key-
value pairs. It also supports in-order traversal of leaves in sorted order. The
functionality that the map ADT provides is similar to that of a C++ STL map
[Jos99].

A map has an Insert() function that inserts a key-value pair, a Query()
function that retrieves an application value given its key and a Remove() function
that removes the key-value pair from the map.

Hinze describes an implementation of an immutable map using an interval
tree [HPO5].

Figure 3.20 illustrates an interval tree.

A interval tree corresponds to a mathematical expression in which the maxi-

mum and minimum functions are applied to the annotations. The first annotation

92 CHAPTER 3. MAINTAINING STATE

(a) (b) ()

Figure 3.21: Associativity property of an interval tree. Interval trees with
different topologies maintain the property that the first annotation of a node is
the highest first annotation in the subtree suspended on the left and the second
annotation is the highest first annotation in the subtree suspended on the right.

of a node is the minimum of the second annotations of its children. The second an-
notation of a node is the maximum of the second annotations of its children. The
minimum and maximum functions are associative, so during topological trans-
formations the interval tree maintains the property that the first annotation of
a node is the maximum key in the sub-tree suspended by its left child and the
second annotation of a node is the maximum key in the sub-tree suspended by
its right child.

Figure 3.21 illustrates the associativity property of the interval tree.

The key is the access parameter for the functions of the data structure. A
path from the root to a leaf with a given key is found by repeatedly checking
for a leaf and then comparing the key to the first annotation of the node. If the
key is greater than the first annotation then the right child of the node is on the
path. If a leaf with a given key is not present in the interval tree then a leaf with
a different key will be found. It is not necessary to access the children of a node
in order to determine the path.

Figure 3.22 illustrates the insertion and removal of an element in an interval

tree.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 93

o o
=) 55 0
4
s =) &
LN Ly N

(a) (b)

Figure 3.22: Insertion and removal of an element in an interval tree.
(a) Insertion of an element into an immutable interval tree. Version VO contains
the key-value pairs {1 — A,2 +— B,3 +— C,5+— E}. The operation Insert(4 —
D) creates version V1 containing the key-value pairs {1 — A,2 — B,3 — C,4 —
D,5+ E}. The path created by the operation is shaded.

(b) Removal of an element from an immutable interval tree. Version VO contains
the key-value pairs {1 — A,2+— B,;3+ C,4+— D }. The operation Remove(3)
creates version V1 containing the key-value pairs {1 — A,2 — B4~ D}. The
path created by the operation is shaded.

94 CHAPTER 3. MAINTAINING STATE

V2 V1 VO
wov &5
i
o + =

VO

Figure 3.23: Animation showing the growth of an interval tree through
a series of insertions. New versions of the data structure are created by each
operation. In each case the path created by the operation is shaded.

(a) The initial data structure containing the key-value pair 4 — D.

(b) After Insert(1+— A)

(c) After Insert(2 — B)

(d) After Insert(3 — C')

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 95

Canonical Binary Tree specialisation

annotator(< a,b >, < ¢,d >) < min(b,d), max(b,d) >

tdentity <,00 >

APIT function Canonical Binary Tree
access function

Insert(key) insert(key)

Remove(key) delete(key)

Query(key) query(key)

Table 3.3: Map implementation. The Canonical Binary Tree can be spe-
cialised to implement an interval tree and its access functions can be adapted to
present a map ADT to the application.

Figure 3.23 illustrates the growth of the immutable interval tree.
The interval tree suffers from the problem that it does not specify a represen-

tation of the empty map.

3.5.6 Interval tree with sentinel

The Canonical Binary Tree can be adapted to implement an interval tree with a
sentinel. The first annotation of the sentinel is not used and the second annotation
is infinity. In practice, the sentinel is annotated with the maximum value of its
data type.

Table 3.3 contains all of the information needed to specialise the Canonical
Binary Tree so that it implements the map ADT.

The Query() function returns a value for every possible value of the access
parameter, even when the access parameter does not match a key. This is not
the behaviour typically expected of a map. The ADT wrapper functions can
implement checks to ensure that the value retrieved by a query corresponds to
the key and that duplicate keys are handled appropriately.

A Query() function that checks that value returned corresponds to the key
supplied as an access parameter can be implemented by storing the value of the
key as part of the application value. In a concurrent execution environment the
annotation of a leaf cannot be used for this purpose as it is regarded as structural
information and is not accessible through the functions of the Canonical Binary

Tree.

96 CHAPTER 3. MAINTAINING STATE

10
5 5
2 3 3 2
2 2
1 1 1 1 1 1 1 1 1 1
[1]1g [21b]| |[3]1f| | [4]i [51h| [[6]ld| [[7]le| |[[8]c| |[9]a| |[10]]

Figure 3.24: Example Sequence tree containing the values {[1]g, [2]b, [3] f, [4]4,
[5]h, [6]d, [7]e, [8]c, [9]a, [10];}

A set ADT can be implemented by an interval tree that does not permit dupli-
cate values. To implement the set ADT the Insert() function should call query()
to ensure the uniqueness of a value before calling insert(). In a concurrent exe-
cution environment the Canonical Binary Tree functions should be referentially
transparent so the insert() function, which alters the Canonical Binary Tree,

cannot give any indication of success.

3.5.7 Vector

A vector is an ordered set of values that supports random access based on ordinal
number. The vector ADT provides a similar set of functions to the deque ADT
in addition to random access to ordinals within the sequence. The functionality
that the vector ADT provides is similar to that of a C++ STL map [Jos99].

The Insert() function inserts an ordinal value pair into the vector. The
Query() function is supplied with an ordinal as the access parameter. The func-
tion returns the value associated with the ordinal. The Remowve() function deletes
an ordinal value pair from the data structure. An in-order traversal of the vector
returns values in the order given by their ordinal number.

Hinze describes an implementation of an immutable vector based on a se-
quence tree [HP05].

A node of the tree is annotated with the sum of the annotations of its children.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 97

© O
) fars @ ars] G
2 e OO ais] (D

[11a| |[2]b [1la| |[2]b [81c| |[4]d [381c| |[4]d

Figure 3.25: Associativity property of a sequence tree. Sequence trees
with different topologies maintain the property that a node is annotated with the
sum of the annotations of its children.

A leaf of the tree is annotated with a value of one.

Figure 3.24 illustrates the sequence tree. The ordinal numbers shown in square
brackets are for illustration purposes only and are not part of the data structure.

A vector corresponds to a mathematical expression in which the addition func-
tion is applied to a value of one. Addition is both associative and commutative,
so the vector maintains the property that the annotation of a node contains the
sum of the number of leaves in the subtree that it suspends, regardless of the
topology of that subtree.

Figure 3.25 illustrates the associativity property

To locate a leaf with a given target ordinal the annotations of the children
of the root node are examined. If the target ordinal is greater than or equal to
the annotation of the left child then the right child is on the path. If the right
path is chosen then the annotation of the left path is subtracted from the target
ordinal number. If the left path is chosen then the target ordinal is unchanged.
The comparison process continues at each node until a leaf is reached.

Figure 3.26 illustrates the insertion and removal of an element in an immutable
sequence tree.

Figure 3.27 illustrates the growth of the immutable sequence tree.

The vector ADT can be restricted to implement an immutable array. To

implement an immutable array a vector is populated with values before normal

98 CHAPTER 3. MAINTAINING STATE

VO V1

SO A

1 1 1 1 1 1

(a) (b)

Figure 3.26: Insertion and removal of an element in an immutable se-
quence tree.

(a) Insertion of an element into an immutable sequence. Version V0 contains the
sequence {[1]B,[2]C,[3]D, [4]E}. The operation Insert([1]A) creates version V1
containing the sequence {[1]A, [2]B, [3]|C,[4]D, [5]E}. The path created by the
operation is shaded.

(b) Removal of an element from an immutable sequence. Version VO contains the
sequence {[1]A,[2]B,[3]C, [4]D} The operation Remove([l]) creates version V1
containing the sequence {[1|B, [2|C, [3]D}. The path created by the operation is
shaded.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 99

V2 V1 VO

Vi Vo
Vo
% 1 1 1 1 1
[11D [1]C [21D [11B| |[2]1C| |[31D
(a) (b) (c)
V3 V2oV
4 3 2
3
2 2
1 1 1 1
mA| (18] [B1C (41D

Figure 3.27: Animation showing the growth of an immutable sequence
tree through a series of insertions. New versions of the data structure are created
by each operation. In each case the path created by the operation is shaded.
Version V3 represents the sequence {[1]A4, [2|B, [3|C, [4|D}

(a) Initial data structure containing the value D.

(b) After Insert([1]C)

(c) After Insert([1]B)

(d) After Insert([1]A)

100 CHAPTER 3. MAINTAINING STATE

access is permitted. Replacement is a compound operation formed by an insert
and a remove operation acting on elements with the same ordinal number. It is
the only operation normally permitted by a vector implementing an array.

The sequence suffers from some of the same shortcomings as the priority
queue, it requires the implementation of access functions which are specific to
the vector ADT and it does not distinguish an empty vector from a non-existent

vector.

3.5.8 Directed sequence

A new data structure, the directed sequence, addresses the shortcomings of the
sequence tree. The comparison function of the sequence accesses only the node
annotation. The directed sequence supports a sentinel and fully abstracts the
ADT implementation from the functions of the Canonical Binary Tree.

The sequence requires that the annotations of the children of a node are
examined to determine the path and this results in unnecessary accesses to nodes
that are not on the path. To avoid these accesses a node should be annotated in
such a way that the direction of the path can be determined without accessing the
annotations of its children. This can be achieved by a regarding the annotation
as a pair.

The second annotation, of the directed sequence, is the sum of the second
annotations of the left and right children. The first annotation is set to the
value of the second annotation of the left child. The first annotation is used to
determine the path.

Figure 3.28 illustrates an example of a directed sequence.

To locate a leaf with a given target ordinal that ordinal is compared with the
first annotation of the root node. If it is greater the right child is chosen otherwise
the left child is chosen. This process is repeated until a leaf is reached. When
a right child is chosen the second annotation of the child is subtracted from the
target ordinal.

The sentinel is always the right-most leaf of the Canonical Binary Tree. To
support the Back() and Push_back() functions the sentinel and the leaf to the left
of the sentinel must be annotated in such a way that they can be found without
specifying an ordinal. The ADT specifies a special value which causes the second
annotation of the root to be used as the access argument. The second value of

the root is the number of elements in the sequence, including the sentinel.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 101

10
2 3
5 5
2 1
1 1 1 1 1 1 1 1 1 1
[11g| |[21b| |[31f| |[4]i]| |[51h| |[6]1d| [[7]1e| |[8]c| |[9]a
Figure 3.28: Example Directed sequence containing the values:

{[1]g, [2]b, [3]f, [4]i, [5]h, [6]d, [T]e, [8]¢c, [9]a}. The shaded path illustrates the ac-
cess to the leaf with an ordinal of seven. The sentinel is the right-most leaf. The
first annotation is shown above the second annotation.

Canonical Binary Tree specialisation

annotator(< a,b >, < c¢,d >) <bb+d>
identity < 1>
API function Canonical Binary Tree
access function
Insert(ordinal) insert(ordinal)
Remove(ordinal) delete(ordinal)
Query(ordinal) query(ordinal)
Push_front() insert(0)
Pop_front() delete(0)
Front() query(0)
Push_back() insert(x)
Pop_back() delete(x — 1)
Back() query(* — 1)

Table 3.4: Directed sequence implementation. The Canonical Binary Tree
can be specialised implement a directed sequence and its access functions can be
adapted to present a vector ADT to the application. The second annotation of
the root is represented by a star.

102 CHAPTER 3. MAINTAINING STATE

Table 3.4 contains all of the information required to specialise the Canonical
Binary Tree so that it implements the vector ADT. The value of the second
annotation of the root node is represented by a star.

The functions of the Canonical Binary Tree are complete so all values of the
access parameter are valid arguments. An ordinal value less than or equal to
one refers to ordinal number one. However, an ordinal number equal to or higher
than the number of elements in the sequence refers to the sentinel. The Remouve()
function verifies that its access argument is less than the second annotation of
the root.

The directed sequence permits access to all leaves using their ordinal number.
The ordinal is relative to the start of the sequence. Array indexes map to ordinals
which start at one. For example, the Query(0), Query(1) and Front() functions
have the same effect.

An immutable array can be created by restricting the functions of the vector.

The sequence implementation requires that a value is retained and decre-
mented while determining the path, so the function that determines the path
through the data structure is specific to the vector ADT. This is unfortunate
as some of the generality of the Canonical Binary Tree must be sacrificed to
support the sequence. In our implementation the Canonical Binary Tree func-
tions are supplied with an additional parameter which alters the mechanism for
determining the path when implementing a sequence.

The sequence implementation requires that the ADT has access to the sec-
ond annotation of root node. This is unfortunate as annotations are structural

information that should not be exposed to the application.

3.5.9 Previous work

Anderson describes how the comparison operations used to determine the path
through an interval tree can be confined to those nodes that are actually on the
path [AN95]. We extend this idea and apply it to immutable min-trees, deques

and sequence trees.

3.6. BALANCING 103

3.6 Balancing

An immutable binary tree can be balanced to minimise the time taken to access
the data within it. A number of schemes for balancing binary trees are described
in the literature. This section describes the implementation of a scheme for
balancing the Canonical Binary Tree. The balancing process is independent of
the ADT implemented by the Canonical Binary Tree.

The problem is to adapt a balancing scheme, implemented in an imperative
programming language, so that it can be used to balance the immutable Canonical
Binary Tree. Balancing reduces the average time required to access the data
associated with a leaf. Balancing improves the performance of the priority queue,
deque, map and vector implemented by the ADT by reducing the average access
time of all of the Canonical Binary Tree operations.

The main contribution of this section is the development of an Immutable
Data Structure that separates the performance characteristics of the structure
from the ADT to which it conforms. This section focuses on techniques for
minimising the average access time and the amortised access time of Immutable

Data Structures implemented in imperative programming languages.

3.6.1 Balancing schemes

The Canonical Binary Tree described in the previous section can be balanced
independent of the ADT that it implements.

Figure 3.29 illustrates how the associativity property of the annotator function
permit the topological transformations required to balance the tree regardless of
the ADT that it implements.

A balancing scheme works by implementing a set of balancing invariants.
When the invariants are compromised the tree is restructured so that its topology
conforms to the invariants. Restructuring takes the form of topological transfor-
mations called rotations. A balancing scheme can be characterised by a set of
invariants and a set of rotations. These are combined into a set of cases. Each
case is characterised by a configuration of nodes that violates the invariants.
These nodes are made to conform to the invariants by applying the rotations.
Typically, balancing algorithms restructure the tree during a mutation, guaran-
teeing balancing invariants as post conditions to each mutating function. The

post condition is enforced by applying the checks to each node altered by the

104 CHAPTER 3. MAINTAINING STATE

((A.B).C).D A.(B.(C.D))
(A.B).(C.D)

(A lle]le][n]

() (b) ()

Figure 3.29: The associativity property permits balancing. The mean
number of nodes that are traversed to reach a leaf of the balanced tree (b) is two,
whereas for the unbalanced trees (a) and (c) it is 2.25. The associativity property

of the annotator function ’.” allows the topology of the tree to be modified, in

order to reduce the average access time, without affecting the functionality of the
ADT being implemented.

mutation.

Many tree balancing schemes are based on B-Trees [BM72]. In these schemes
the invariants and balancing information are expressed in terms of binary B-Tree
composed from the nodes of the binary tree. The B-Tree nodes are referred to
as pseudo-nodes. Each B-Tree pseudo-node contains a number of binary tree
nodes. The maximum number of children of a pseudo-node is referred to as the
order of the B-tree. Nodes in the same pseudo-node are said to be joined by
horizontal edges. Edges between pseudo-nodes are said to be vertical. Balancing
information in the node indicates whether each edge is horizontal or vertical.
Pseudo-nodes can be joined or split by changing the orientation of the edges. A
balancing algorithm joins and splits the B-tree nodes so that the B-tree remains
perfectly balanced. This places a limit on the imbalance of the underlying binary
tree.

A red-black tree is a self balancing binary B-tree of order four. For every
red-black tree there is at least one corresponding 2-4 B-Tree with elements in
the same order. The invariants are described in terms of the colours red and
black. The implementation of an ephemeral red-black tree is described in detail
by Tarjan [GS78]. As a post condition to insertion each node on the path is

examined to ensure that it complies with the invariants. Compromised invariants

3.6. BALANCING 105

are restored by a series of rotations. For each node on the path of an insertion
there are five possible cases. There are six possible cases for each node during a
deletion.

Okasaki describes an immutable implementation of a red-black tree [Oka9§]
in the functional programming languages Haskell and ML. The implementation
relies on repeated pattern matching. Each node on the path is compared with
one of the cases and compromised invariants are fixed by applying rotations.
Each case corresponds to a single program line in both functional programming
languages making the implementation both brief and easy to follow.

The C++ STL contains an implementation of a red-black tree in an imperative
programming language [Jos99]. The imperative implementation relies on explicit
testing of each of the cases for each node on the path. Rotations are implemented
by pointer manipulation. As a result the imperative implementation appears
much more involved than the functional implementation. The high number of
cases and the complexity of the rotations makes the implementation of red-black
balancing in an imperative programming language both long winded and opaque.

To apply a balancing scheme to the Canonical Binary Tree the rotations must
be implemented using path copy. This promises to make the implementation even
more unwieldy, so to ease the implementation effort a simpler balancing scheme

than red-black is required.

3.6.2 Balancing the Canonical Binary Tree

This section describes how the Canonical Binary Tree can be balanced using
the AA-tree balancing scheme [And93]. The AA-tree has fewer cases and simpler
rotations making it far simpler to implement than a red-black tree. The rotations
are easily expressed in terms of path copy operations.

An AA-tree is a self balancing binary B-tree of order three. For every AA-
tree there is at least one corresponding 2-3 B-Tree with elements in the same
order. The balancing of ephemeral AA-trees is described in detail by Anderson
[And93]. A 2-3 B-Tree consists of pseudo-nodes containing either one or two
binary tree nodes. Two binary tree nodes joined by a horizontal edge are regarded
as forming a pseudo-node. Restructuring operations implement rotations that
maintain a perfectly balanced 2-3 B-tree. This places a limit on the imbalance of
the underlying binary tree.

Each tree node maintains balancing information in the form of a level number.

106 CHAPTER 3. MAINTAINING STATE

A.((B.C).D)
level X+1

level X

D
B.C
level X-1

C
level X-1

()

B
level X-1

A.(B.(C.D))
level X+1

A
B.(C.D)
level X

B
level X-1

C
level X-1

D
level X-1

(b)

Figure 3.30: A skew balancing rotation corrects violations of the invariant
that only right edges are horizontal. Horizontal edges linking the nodes within a
pseudo-node are shown in bold. The level number adjustment is also indicated.

(a) A subtree that violates the invariant because it has a horizontal left edge.

(b) A right rotation transforms the horizontal left edge into a horizontal right
edge.

3.6. BALANCING 107

A.(B.(C.D))
level X
B.(C.D)
level X
B

level X-1

A
level X-1

C
level X-1

D
level X-1

D
level X-1 level X-1

Figure 3.31: Split rotation corrects violations of the invariant that the largest
pseudo-node has three children. Horizontal edges linking the nodes within a
pseudo-node are shown in bold. The level number adjustment is also indicated.

(a) A subtree that violates the invariant because it forms a pseudo-node with
four children.

(b) A left rotation is performed to transform a pseudo-node with four children
into three pseudo-nodes with two children each. The split balancing rotation
reduces the size of a pseudo-node by elevating the middle node.

108 CHAPTER 3. MAINTAINING STATE

Figure 3.32: Example of a skew balancing rotation acting on a vector.
(a) A Canonical Binary Tree implementing a vector. The level number of each
node is shown. Vertical edges are dotted. Horizontal edges are bold. The in-
sertion of an element, with a value of A, creates a new version which is shaded.
Insertion without balance creates a horizontal left edge that violates the invariant
that only right edges may be horizontal so a skew balancing rotation is performed.
(b) Version VO of a vector viewed as a 2-3 B-tree.

(c¢) The Canonical Binary Tree implementing this vector after inserting the value
A and performing a skew balancing rotation. The skew balancing rotation trans-
forms a potential horizontal left edge into a horizontal right edge.

(d) Version V1 of the vector viewed as a 2-3 B-tree.

3.6. BALANCING 109

Figure 3.33: Example of a split balancing rotation acting on a vector.
(a) A Canonical Binary Tree implementing a vector. The level number of each
node is shown. Vertical edges are dotted. Horizontal edges are bold. The in-
sertion of an element, with a value of C, creates a new version which is shaded.
Insertion without balance creates two adjacent horizontal right edges representing
an overly full pseudo-node that violates the invariant that a pseudo node has at
most three children.

(b) Version VO of a vector viewed as a 2-3 B-tree.

(c¢) The Canonical Binary Tree implementing this vector after inserting the value
C and performing a skew followed by a split balancing rotation. The split balanc-
ing rotation transforms the potential overly full pseudo-node by raising the level
of the middle node. This creates a horizontal left edge which must be transformed
into a horizontal right edge by a skew rotation.

(d) Version V1 of the vector viewed as a 2-3 B-tree.

110 CHAPTER 3. MAINTAINING STATE

This number corresponds to the level of the pseudo-node within the B-Tree. The
root pseudo-node has the highest level number. Pseudo-nodes at the bottom of
the tree are on level 1 and leaves are on level 0. A binary tree edge which connects
nodes with equal level numbers is regarded as a horizontal edge and the nodes
joined by a horizontal edge form a pseudo-node. A binary tree edge connecting
nodes with different level numbers is regarded as a vertical edge and these edges
connect pseudo-nodes to form the B-tree.

The AA-Tree maintains the following invariants:
e Only right edges are horizontal

e Pseudo-nodes have at most three children

e There are no breaks in the level numbers

The invariants can be implemented by examining three cases for insert opera-
tions and five cases for delete operations. Restructuring operations consisting of
combinations of just two balancing rotations, called skew and split, are required
to maintain the invariants. The skew and split balancing rotations change the
topology of the Canonical Binary Tree. The associativity of the annotator func-
tion ensures that the annotations preserve the functionality of the ADT that it
implements.

A 2-3 B-tree preserves the invariant that all right edges are horizontal. A
horizontal left edge is transformed into a horizontal right edge by a right rotation
called a skew.

Figure 3.30 illustrates a skew balancing rotation.

A 2-3 B-tree preserves the invariant that a pseudo-node has at most three
children. A pseudo-node with four children contains two horizontal right edges.
These are transformed into a left and a right vertical edge by a left rotation called
a split. The split balancing rotation raises the level of the middle vertex.

Figure 3.31 illustrates a split balancing rotation.

Figure 3.32 illustrates an example of a skew balancing rotation acting on a
vector.

Figure 3.33 illustrates an example of a split balancing rotation acting on a
vector.

A tree can be balanced at any time. In our implementation balancing takes

place during insert and delete operations. These operations create a new path

3.6. BALANCING 111

within the Canonical Binary Tree and this path can cause the balancing invari-
ants to be compromised. Each node on the path is checked by comparing the
configuration of neighbouring nodes to ensure the invariants are preserved. The
process of checking the balancing invariants starts at the leaf and ends at root.
The addresses of the vertices on the path created by the operation are maintained
on a stack so that the path can be accessed in reverse order. An operation that
would cause an invariant to be compromised is made compliant by restructuring

the tree during the path copy.

3.6.3 Previous work

Tree balancing schemes reduce access time by ensuring that paths within a tree
are of similar lengths so that the tree remains balanced. Guibas describes a
commonly used balancing scheme for ephemeral trees called the red-black tree
[GS78]. Balancing schemes are applicable to both ephemeral and Immutable Data
Structures. Okasaki applies the red-black scheme to balance immutable binary
trees implemented by a purely functional data structure [Oka98]. Okasaki also
describes a purely functional implementation of the AVL tree balancing algorithm.
However, the balancing of an immutable binary tree implemented in an imperative

programming language has not previously been considered.

3.6.4 Utility functions

The Canonical Binary Tree provides an ADT-agnostic in-order traversal of the
data structure that returns the values of the leaves. The first value returned is
that of the left most leaf of the tree and the last value returned is that of the
sentinel.

The Canonical Binary Tree also provides a full copy utility that creates a copy
of the tree which shares leaves with the tree being copied and a naive copy utility
that creates an entirely new copy of the tree. The full copy utility can be used
to both copy and compress a tree. The naive copy can be used to both copy a

tree and to convert between different ADTs.

3.6.5 Optimisation

To reduce the number of paths created by the balance process a copy of a path

can be balanced in mutable storage and then copied to immutable storage. This

112 CHAPTER 3. MAINTAINING STATE

optimisation reduces the amount of storage consumed by the Immutable Data

Structure at the cost of additional copying.

Anderson describes a 2-3 B-tree in which the balancing information takes the
form of a level number and the invariants act on this number. This formulation
is known as an AA-tree. However, the level number is just an implementation
convenience. The invariants of the tree can also be expressed in terms of just
horizontal and vertical edges. Such a formulation results in a smaller node size

as a single bit indicator can be used to indicate the orientation of an edge.

A node may contain information about the subtree it suspends because that
subtree is immutable. This information can reduce the need to access the subtree
during balancing operations. It is possible to record within the node itself whether
or not a child of a node is a leaf. It is also possible to record whether or not the
link to a child’s left child is horizontal or vertical within the parent node. These
optimisations reduce the number of nodes that must be accessed when testing
the balancing invariants. Using these optimisations it is only necessary to access

nodes on the path to balance the tree.

The size of a node can have a significant effect on performance as larger node
sizes reduce the effectiveness of caching. In our implementation the data type of
the annotation is supplied as a template parameter. The smallest data type that
can accommodate the expected range of annotation values is chosen to minimise
the node size. The nature of the references to a child node also affects the size
of the node. Memory displacements or ordinal numbers may be used instead
of pointers to reduce the node size when the memory to be used by the data

structure is pre-allocated in a contiguous chunk.

A tree with multiple children per node improves access times by making the
tree shallower but this optimisation comes at the cost of increased implementation
complexity. A binary tree can be mapped onto a tree with larger nodes by
making some of the parent-child relationships implicit. When paths are written
to contiguous memory the relationship between a node and one of its children
can be implied, because this child resides in a consecutive memory location, so
it is only necessary that a node contain a reference to one of its children and
a bit indicating whether that child is to the left or right. An immutable path
is typically written into contiguous memory leaf first, so the implicit child of a
node immediately precedes it in storage. By restricting the implicit parent-child

relationship to nodes on a path it is possible to achieve the effect of a large

3.6. BALANCING 113

node with multiple children without significantly increasing the implementation
complexity.

When implementing Immutable Data Structures using C or C++ it is tempt-
ing to allocate individual nodes by using the functions malloc or new, but we
found that this leads to poor performance. The effect is particularly pronounced
in a concurrent execution environment where memory allocation is typically se-
rialised. We found that allocating nodes on a cache line boundary and fitting an
integral number of nodes into a cache line improved performance. In our imple-
mentation we used the Threading Building Blocks scalable memory allocator to
pre-allocate cache aligned contiguous chunks of storage for our data structures
[Int09]. A discussion of memory allocation in Immutable Data Structures can be

found on our website [Jarll].

3.6.6 Amortised access time

Amortised analysis is a method of analysing the performance of a function acting
on a data structure. The idea is that costly operations occur rarely and that
their affect on performance is offset by the occurrence of cheaper, more frequent
operations. The analysis proceeds by establishing the worst case time bound of
the function and how frequently this worst case occurs. The amortised time per
operation is the worst case time bound on a series of m operations divided by
m. Goodrich gives a detailed explanation of amortised time analysis for many
common ephemeral data structures [GT09].

Amortised analysis has two distinct purposes. Firstly it guides data structure
design and allows comparison between equivalent operations on different data
structures. For example, the amortised time for the insertion of a value with
associated priority into a priority queue ADT implemented by two different data
structures can be compared. Secondly, it guides application development because
it indicates the relative cost of different operations.

Published amortised access times for functions acting on a data structure
are an important guide for developing high performance applications. However,
access times are a characteristic of the data structure implementation rather than
the ADT. If the application programmer needs to know the amortised access time
for a series of operations then the details of the implementation of that data
structure have not been completely hidden by abstraction. Using the results

of amortised analysis as a guide to developing applications is orthogonal to the

114 CHAPTER 3. MAINTAINING STATE

principle of encapsulating the implementation details of a data structure.

The amortised time for all functions of the Canonical Binary Tree are identical
as each function requires that a single leaf be accessed. The worst case time bound
is 2loga(n) as the longest path to a leaf in a balanced AA-tree is twice as long as
the shortest [And93].

Chapter 4
Accessing State

Weakly isolated concurrent programs are more difficult to write than strongly
isolated concurrent programs. Transactional Memory systems are weakly iso-
lated so they have complex concurrent semantics and are prone to pathologies
which make their run-time behaviour unpredictable. This chapter describes how
isolating shared state in linearizable objects provides a concurrent programming
model that has intuitive concurrent semantics and that is not prone to isolation
pathologies.

Section 4.1 identifies weak isolation as the reason why Transactional Memory
systems have complex concurrent semantics and are prone to pathologies.

Section 4.2 describes how Immutable Data Structures can implement lineariz-
able objects.

Section 4.3 describes a check pointing technique which relies on the composi-
tion of Immutable Data Structures.

Section 4.4 compares a concurrent application which calculates the minimum
spanning tree of a graph with a similar application which uses Transactional

Memory.

115

116 CHAPTER 4. ACCESSING STATE

4.1 Linearizable objects

Concurrent programming using mutual exclusion is considered to be difficult but
developing software using Memory Transactions is not necessarily easier. Trans-
actional Memory systems have complex concurrent semantics and are prone to
isolation pathologies, such as cascading aborts, which make their run-time be-
haviour unpredictable. Weak isolation can be identified as the cause of these
problems. To avoid these problems Memory Transactions should be strongly
isolated and shared state should be encapsulated in linearizable objects. Lin-
earizable objects have intuitive concurrent semantics and are free from isolation
pathologies.

Transactional Memory systems weaken transactional isolation for several rea-
sons. Firstly, to make programming easier by minimising the application changes
required when implementing atomic sections. Secondly, to improve concurrent
performance, by allowing transactions to share values. Thirdly, to allow transac-
tions to be composed by nesting.

The main contribution of this section is the identification of weak transactional
isolation as one of the reasons why concurrent programs are so difficult to write.

This section focuses on implementing strongly isolated Memory Transactions.

4.1.1 Weak Isolation

Weakly isolated transactions appear to make programming more convenient by
allowing active transactions to pass values to each other. However, weakly iso-
lated transactions interact with each other in many different ways which makes
their concurrent semantics very complex. Programming a system with complex
semantics is much more difficult than programming a system with simple intuitive
semantics. In a large program the complex semantics of weak isolation overwhelm
the programming convenience of value passing.

Section 4.1.5 identifies weak isolation as the origin of the semantic complexity
of transactional systems.

Weak isolation appears to improve the performance of a transactional system
by allowing a value to be shared between transactions as soon as it is produced,
but this introduces isolation pathologies which make the behaviour of the concur-
rent system unpredictable. As the number of participating processors increases so

does the overhead of the mechanisms required to avoid pathologies. Eventually,

4.1. LINEARIZABLE OBJECTS 117

this overhead exceeds the benefits of sharing values.

Section 4.1.6 describes how weak isolation causes the isolation pathologies.

A programming system should permit the programmer to compose a complex
application from simple components and the act of composition should not add
complexity. Transactional Memory systems support nesting so that transactions
can be composed. Nested transactions have complex concurrent semantics be-
cause they are a form of weak isolation in which value sharing is restricted to the
parent-child relationship. To compose complex transactional applications from
simpler components it is not necessary to support nested transactions. Commer-
cial database applications can be very complex, yet nested transactions are rarely
used.

Section 4.1.7 describes the semantics of nested transactions.

A solution to the problem of weak isolation and its associated pathologies
must address the reasons why isolation is typically weakened. Weak isolation per-
mits state to be shared between processors efficiently, minimises the application
changes required to support Memory Transactions and facilitates transactional

composition.

4.1.2 Strong Isolation

The requirements that motivate the use of weak isolation should be satisfied by
the interface to shared state. Memory Transactions should be strongly isolated
and shared state should be encapsulated in linearizable objects.

Linearizability is a correctness condition that characterises the concurrent
behaviour of an object. Informally, an object is said to be linearizable if all of its
fields are private and the execution of each of its methods appear to take place
atomically, at a single moment in time, between their invocation and response
[Her08].

Section 4.1.3 describes the property of linearizability in detail.

A mutating method of an object can be seen as a transformation from a set
of pre-conditions, that are true of the object before the method call, to a set of
post-conditions, that are true afterwards. When these conditions are met the
object is said to be consistent. A linearizable object can ensure the consistency
of the data that it encapsulates.

A method of a linearizable object can be regarded as a Memory Transaction

because it is atomic, isolated and can ensure consistency. The execution of a

118 CHAPTER 4. ACCESSING STATE

method of a linearizable object forms a strongly isolated Memory Transaction
which is free from isolation pathologies and has intuitive concurrent semantics.

A linearizable object satisfies our requirement for a solution to the problems
caused by weak isolation because it allows state to be shared between processors
efficiently, minimises changes to the calling application and allows transactions
to be composed.

In a concurrent system, shared state should be represented to applications ex-
clusively as linearizable objects because they have intuitive concurrent semantics

and predictable run-time behaviour.

4.1.3 Linearizability

Linearizability can be viewed as a special case of serialisability in which a trans-
action is restricted to a single method applied to a single object.

Linearizability is a non-blocking property of objects. An invocation of a
method is never required to wait for another pending invocation to complete
so the methods of linearizable objects are not prone to the progress pathology of
dead-lock.

Linearizability is a local property. The methods of an object can enforce
linearizability without reference to any other object or to any global state so it
is not necessary to invoke the concept of a global transaction manager to enforce
linearizability.

The Linearizability property of an object may be preserved when objects are
composed. A system composed of objects is linearizable if and only if every object
in the system is linearizable.

The property of linearizability does not permit method calls whose execu-
tion does not overlap to be re-ordered so it enforces a sequential order of events
affecting an object and preserves the real time order of method calls.

The property of linearizability can be contrasted with that of sequential con-
sistency which, when applied to objects, requires that method calls issued by
different processors appear to take place in some global sequential order. Se-
quential consistency is a property of the method calls of objects in a concurrent
system that many programmers expect [Lam97].

Sequential consistency is not a local property so a global view of state is re-
quired to ensure sequential consistency. It is a blocking property so an invocation

of a method is required to wait for another pending invocation to complete. It

4.1. LINEARIZABLE OBJECTS 119

is not a composable property so a system composed of multiple sequentially con-
sistent objects is not necessarily sequentially consistent. Sequential consistency
permits method calls whose execution does not overlap to be re-ordered so it does
not preserve the real time order of method calls.

Linearizability is a stronger condition than sequential consistency. Every lin-

earizable history is sequentially consistent but not vice versa.

4.1.4 Previous work

Herlihy introduced linearizability as a correctness condition [HW90]. Herlihy also
provides an accessible introduction to linearizability [Her08]. Linearizability has
not previously been considered as a correctness condition for Immutable Data

Structures.

4.1.5 The semantics of weak isolation

Isolation levels are a way of describing the behaviour of weakly isolated transac-
tions in terms of the access that a transaction has to the uncommitted state of
another transaction. In Database systems the classification of isolation levels is
formalised as the ANSI/ISO Isolation Levels [ISO92]. This formalism describes
weak isolation by characterising a read access that would not be permitted in a
strongly isolated transactional system.

A dirty read is an access to the uncommitted state of another transaction.
The transaction from which the variable was read might never commit. A trans-
actional system that permits dirty reads is regarded as having a transaction iso-
lation level of read uncommitted. 1t is difficult to write a concurrent program for
a system that permits dirty reads as there can be no happens-before relationship
between transactions.

A non-repeatable read is an access to a shared variable that can be modified
by another transaction. A variable can appear to have a different value when read
for a second time within a single transaction. A transactional system that permits
non-repeatable reads is regarded as having an isolation level of read committed. 1t
is difficult to write a concurrent program in a system that permits non-repeatable
reads as the value of variables can appear to change for reasons outside the
immediate logic of the program.

A phantom read is an inconsistent access to shared state. A transactional

120 CHAPTER 4. ACCESSING STATE

system that permits phantom reads is regarded as having an isolation level of
repeatable read. This isolation level is referred to as repeatable because a read
access to a single variable will always return the same value within a transac-
tion. However, the reading of multiple variables within a transaction may not,
necessarily, present a consistent view of shared state. It is difficult to write a
concurrent program in a system that permits phantom reads as the value of the
variables accessed by a transaction do not necessarily represent a consistent state.

The ANSI/ISO Isolation Levels formalism has been criticised as being vague,
incomplete, inconsistent and not corresponding to the levels implemented by com-
mercial systems [BBG195]. These criticisms support our assertion that weak iso-
lation does not have intuitive concurrent semantics. If the ANSI committee could
not come up with a logical way of classifying the semantics of weak isolation then
there is little chance that ordinary programmers will be able to reason about
them.

Transactional Memory systems compromise the strict isolation of transactions
to make a program easier to write. However, weakly isolated concurrent systems
have complex semantics that can make a concurrent program more difficult to

write.

4.1.6 Isolation pathologies

Isolation pathologies arise when scheduling is applied to enforce reasonable be-
haviour on weakly isolated transactions.

A transaction schedule in which a transaction may commit before a trans-
action that wrote a variable that it has read is called non-recoverable. The
transaction schedule is non-recoverable because if the transaction it read from
aborts then it too should abort, because the value it read should never have been
written. However, once the transaction has already committed it is not possi-
ble to abort. A transaction schedule in which a transaction can commit only
after all the transactions it has read from have committed is called recoverable.
Non-recoverability is an isolation pathology of transactional systems that leads
to inconsistent results.

A transaction schedule in which a transaction is permitted to read uncommit-
ted values can suffer from the pathology of cascading aborts. A cascading abort
occurs when a transaction reads a value, written by another transaction, that has

not yet committed. If the transaction from which the value was read is aborted

4.1. LINEARIZABLE OBJECTS 121

then the reading transaction must also abort. A transaction schedule in which
a transaction can only read committed values avoids the pathology of cascading
aborts. Cascading aborts are an isolation pathology that causes unpredictable
run-time behaviour.

A transaction schedule in which all transactions appear to execute in isolation
is said to be serialisable. The execution is called serialisable because it is equiva-
lent to an execution in which all transactions execute one after the other. A serial
transaction schedule in which the order of conflicting operations matches the or-
der in which the transactions commit is said to be strict. Strictly serialisable
schedules are recoverable and not prone to the pathology of cascading aborts.

Transactional Memory systems compromise the strict isolation of transac-
tions to obtain concurrent speed-up. However, weak isolation leaves Transac-
tional Memory systems prone to isolation pathologies that make their run-time

performance unpredictable.

4.1.7 Nested Transactions

Nesting permits the composition of complex programs from simpler components.
Transactional nesting is a form of weak isolation in which values may be shared
between transactions if there is a parent-child relationship between them. Trans-
actional nesting has complex semantics and guaranteeing the correctness of exe-
cution has high overheads.

A nested transaction is a transaction whose execution is properly contained
within the dynamic extent of another transaction. However, transactional nesting
is generally taken to mean the nesting of atomic sections so that an outer section
shares speculative state with an atomic section contained within it.

Mutual exclusion is not a composable property and this is often cited as an
argument to motivate the use of Transactional Memory [HMPJHO05]. Tt is argued
that in order for Memory Transactions to be composable a Transactional Memory
system should support nesting.

To support nested transactions isolation must be weakened to permit a parent-
child relationship between transactions. A parent transaction passes information
to its child both explicitly, in the form of shared values, and implicitly, because
the parent must exist in order for the child to be created.

Closed nesting has the simplest semantics but its implementation is complex.

A parent transaction may start a child transaction but the child must commit

122 CHAPTER 4. ACCESSING STATE

before its parent can commit. The speculative state of the child is incorporated
into the speculative state of its parent when it commits. If a child transaction
aborts it can be restarted, without forcing the parent to abort. Closed nested
transactions facilitate the composition of a complex transaction from simpler
components and reduce wasted work. Maintaining the parent-child relationship
between closed transactions has a high overhead because if the parent transaction
is aborted then its children must also be aborted. However, the child transaction
may have already committed so to ensure that the transaction schedule of a
closed nested transaction is recoverable, all of the state produced by the child

transaction must be contained within the parent.

Open nested transactions have complex semantics but the implementation can
be simpler than that of closed nesting. When an open nested transaction commits,
its changes become visible to all other transactions in the system. Concurrently
executing transactions observe changes to shared state immediately [NMAT07].
It is not necessary to maintain multiple versions of shared state so implementation
is simplified. Open nested transactions are composable, although great care must
be taken to avoid pathologies because exposing changes of shared state leads to
the phenomenon of non-repeatable reads and the isolation pathology of cascading

aborts.

There is a precise definition of the semantics of both open and closed nested
transactions [MHO06]. However, other forms of nesting, of which there are many,

do not have precise definitions.

Flattened nesting has complex semantics but simple implementation. Flatten-
ing is similar to closed nesting except that if a child transaction aborts the parent
transaction must also abort. Flattened transactions are effectively nested sub-
routines, all that is required to implement them is a stack of pointers indicating
the calling point in the parent, so implementation is straightforward. Flattened

nested transactions are not composable so their utility is questionable [HLR10].

Many database systems support some form of nested transactions. However,
the use of nested transactions in the database programming environment is not
widespread [GR93|. Nested database transactions can reduce the overhead of
transactional execution. Nesting facilitates the check pointing of transactions to
reduce the amount of work wasted when a transaction aborts [HKO08]. Nesting
also permits short running transactions to abort without affecting their long run-

ning parents. However, the overhead of maintaining the parent-child relationship

4.1. LINEARIZABLE OBJECTS 123

between transactions is significant. In the database environment the overheads
of transaction management, relative to the work done by a transaction access-
ing disk, are very low. Even so, support for nested database transactions has a
significant performance overhead [GR93].

There is wide disagreement on the semantics of transactional nesting and on
the desirability of different forms of nesting [AFS08] [HLR10]. However, the de-
bate about nesting is really a debate about weakening transactional isolation.
The complexity of the issues surrounding transactional nesting obfuscates the
undesirability of weak isolation. Nested transactions, like other forms of weak
isolation, have complex semantics and their run-time execution is prone to isola-
tion pathologies.

Transactional Memory systems permit composition through nesting which
makes a program easier to write. However, nesting is a form of weak isolation with

complex semantics that makes a concurrent program more difficult to write.

124 CHAPTER 4. ACCESSING STATE

4.2 Persistent Data Structures

Linearizability is a desirable property for the objects that encapsulate shared state
in a concurrent system. However, we have proposed that shared state should be
maintained in Immutable Data Structures. This section considers how the access
functions of an Immutable Data Structure can be made linearizable. Lineariz-
ability endows the functions that access shared state with intuitive concurrent
semantics.

A persistent data structure permits access to past versions but in the context
of serial execution Immutable Data Structures do not. During concurrent execu-
tion access to a past version occurs when the root of the structure is modified by
a function executing on another processor. This causes the version being accessed
to become a past version. The tardiness of a function permits access to a past
version. An Immutable Data Structure that permits access to past versions is
persistent. This section considers how access to past versions can be controlled
to ensure the property of linearizability.

The main contribution of this section is the implementation of Immutable
Data Structures as linearizable objects. This section focuses on mechanisms to

restrict access to past versions of an Immutable Data Structure.

4.2.1 Accessing Previous Versions

The property of immutability permits a separation of concerns about the integrity
of a data structure from concerns about the semantic order of the functions
acting on it. A Canonical Binary Tree preserves its structural invariants during
concurrent operation. However, it does not provide any mechanism for ensuring
the semantic ordering or the invariants of the functions acting upon it.

For example, consider a set implemented by a Canonical Binary Tree. A func-
tion inserts a value into the set if and only if the value is not already present.
Structural integrity can be described by a set of invariants related to the connect-
edness of the tree. During concurrent execution the structure of the binary tree
is guaranteed because its structural invariants are the pre and post conditions of
the path copy operation which implements the function. However, the uniqueness
of values in the set is guaranteed by pre and post conditions of the function. The
semantic invariants are guaranteed by the ADT and the structural invariants are

guaranteed by the data structure.

4.2. PERSISTENT DATA STRUCTURES 125

A function can ensure both the structural and the semantic invariants of a
data structure by enforcing mutual exclusion. The use of mutual exclusion is so
pervasive that programmers do not usually distinguish between the semantic and
structural invariants.

A proof of the linearizability of an object typically requires the identification
of the linearization point of each method acting on the object [HW90]. The lin-
earization point of a method is some moment in time between the invocation of
the method and its response. Prior to this moment in time the pre-conditions
of the method are true and after it the post-conditions are true. To be lin-
earizable the execution of the method must appear to take place atomically at
its linearization point. An Immutable Data Structure has both structural and
semantic invariants that can be considered separately.

For example, two processors might attempt to insert the same value into
an Immutable Data Structure concurrently. Both of the operations complete
eventually and the structural invariants of the data structure are preserved. Each
of the instances of the function appears to modify the structure at a unique
moment in time so the data structure has a linearization point and is structurally
linearizable.

Now consider the semantic order of operations on the set. If two instances
of a function attempt to insert the same value concurrently both succeed. The
resulting data structure contains a duplicate value that violates the invariants of
the function. There is no instant in time when the operation can be considered
to have taken place. Consequently, there is no semantic linearization point so the
Immutable Data Structure is not semantically linearizable.

To imbue an Immutable Data Structure with the desirable properties of a
linearizable object all of its access functions must be linearizable. Structural
linearizability is the concern of the Canonical Binary Tree and the semantic lin-
earizability is the concern of the ADT. The access functions of an Immutable
Data Structure must have both semantic and structural linearization points in

order that the Immutable Data Structure is linearizable.

4.2.2 Persistence

An Immutable Data Structure can be made structurally linearizable by requiring
that the root is modified by an atomic instruction. Immutable Data Structures

can be made semantically linearizable by recording the root at the moment of

126 CHAPTER 4. ACCESSING STATE

functional invocation and validating that the root has the same value at the
moment of response. If the value of the root has changed then the function is
invalid.

The root can be modified while a function is active. When this occurs two
functions can be reading different versions of the same data structure concur-
rently. The version referenced by the current value of the root is regarded as the
current version. The version that was referenced by the root at some point in
the past can be regarded as a past version. An Immutable Data Structure that
permits access to past versions is called a persistent data structure.

An Immutable Data Structure in which all access functions record the root
when they start and validate it before replacement is ephemeral. Functions acting
on versions other than the current version are not successful. An ephemeral
Immutable Data Structure is semantically linearizable.

An Immutable Data Structure in which only mutating access functions record
the root when they start and validate it before replacement is partially persistent.
Past versions can be accessed by tardy readers but successful mutations always act
on the most recent version. Mutations acting on past versions are not successful.
A partially persistent Immutable Data Structure, like all of the Immutable Data
Structures we consider in this thesis, are structurally linearizable.

Section 4.2.3 describes the classification of persistent data structures.

Concurrent applications implemented using mutual exclusion always access
the most recent version of a data structure, because it is the only version available.
Programmers are not used to questioning whether the most up to date version
is required. In many application domains the very latest version is not always
required. For example, an on-line reservation system does not need to present
the customer with the most recent version of inventory while they are browsing,
but an up to date inventory is required when the customer is making a purchase.
A partially persistent data structure is suitable for such a purpose because it

ensures that mutations are serialised while permitting concurrent read accesses.

4.2.3 The classification of persistent data structures

Most of the data structures encountered by programmers are both mutable and
ephemeral. A data structure is called persistent if it permits access to all versions

and it is called ephemeral otherwise. The data structure is partially persistent if

4.2. PERSISTENT DATA STRUCTURES 127

(a) Ephemeral (b) Partial per- (c) Full persistence (d) Confluent persistence
sistence

Figure 4.1: Version graphs for various types of persistent data structure.
Versions which can be modified are represented by an ellipse with a double border.
(a) An ephemeral data structure restricts both read and write access to the most
recent version.

(b) A partially persistent data structure restricts write access to the most recent
version but permits read access to past versions.

(c) A fully persistent data structure permits both read and write access to all
versions.

(d) A confluently persistent data structure permits both read and write access to
all versions and provides a meld function that can combine past versions.

128 CHAPTER 4. ACCESSING STATE

all versions can be accessed but only the most recent can be modified. The struc-
ture is fully persistent if every version can be both accessed and modified. The
data structure is confluently persistent if it is fully persistent and has a meld op-
eration which combines more than one version. The evolution of a persistent data
structure can be represented by a directed graph in which each vertex represents
a version and each edge a transformation between versions [Kap04].

A version graph is a representation of the evolution of a data structure.

Figure 4.1 illustrates the version graphs of common types of persistent data
structure.

A persistence type is a restraint on the access to past versions. There are many
possible restraints and therefore many persistence types. Conchon describes a
semi-persistent data structure which permits access only to those past versions
that are ancestors of the most recent version [CF08].

An Immutable Data Structure is composed entirely of immutable values. In-
formally, we describe a persistent data structure as an Immutable Data Structure
that possesses a look-up function capable of accessing past versions. However,
not all persistent data structures are Immutable Data Structures. Persistent Data
Structures constructed using the Fat Node or the Node Copying techniques con-
tain singly assigned values that are not immutable. Persistent Data Structures
constructed using the full copying or path copying technique are Immutable Data

Structures.

4.2.4 Previous work

Driscoll describes persistent data structures in a seminal paper which details all of
the techniques introduced in this section [DSST86]. Kaplan provides an accessible
introduction to persistent data structures [Kap04].

Interest in persistent data structures originated from the development of text
editors. Reps proposed that persistence can be used to create a text editor with
an undo operation [RTD83].

Sarnak describes how persistent data structures can be applied to solve prob-
lems in computational geometry [ST86]. Computational geometry is a branch
of computer science concerned with algorithms that can be stated in terms of
geometry. Computation geometry is relevant to the subject of computer graphics
and much of the early development of persistent data structures occurred in the

mid 80’s when computer graphics became commercially important.

4.2. PERSISTENT DATA STRUCTURES 129

Persistence type Permitted Permitted

read access write access
Ephemeral Most recent only Most recent only
Partially persistent Tardy reads Most recent only
Fully persistent Tardy reads Tardy writes
Confluently persistent | Non-conflicting reads | Non-conflicting writes

Table 4.1: Persistence types for Transactional Data Structures are char-
acterised by the access to past versions that they permit.

The challenges of computational geometry required complex data structures
so the first persistent data structures to be developed were certainly not the
simplest. The subject of persistent data structure has always focused on highly
optimised solutions to challenging problems whilst the implementation of simple
persistent data structures has been somewhat neglected.

The research literature does not make a distinction between persistent data
structures and Immutable Data Structures. The use of a persistent data structure
in a concurrent execution environment and the access to a past version by a tardy
reader have not been considered before.

To permit access to past versions a persistent data structure must implement
some look-up mechanism. Generally, the research literature describing persistent
data structures does not describe the version look-up function in detail. The focus
of research is on the accessibility of past versions rather than the mechanisms to
support that access. Previous work either neglects the details of the look-up
function or assumes that versions are accessed by indexing an array mapping a

version number to the root address of the corresponding version.

4.2.5 The classification of Transactional Data Structures

This thesis introduces Transactional Data Structures which are data structures
that permit access to past versions, although not all accesses are successful.

For each type of persistent data structure there is a corresponding Transac-
tional Data Structure. A Transactional Data Structure with linearizable access
functions is ephemeral because accesses to past versions are not successful. A
Transactional Data Structure that permits tardy readers but prevents writers
from successfully accessing all but the most recent version is partially persistent.

A fully persistent Transactional Data Structure permits both tardy readers and

130 CHAPTER 4. ACCESSING STATE

mutations. A Transactional Data Structure which permits simultaneous accesses
while ensuring serialisability is confluently persistent. It has a validate function
that causes conflicting functions to be unsuccessful and a meld function that
unites past versions.
Table 4.1 summarises the persistence types for Transactional Data Structures.
A Transactional Data Structure is necessarily an Immutable Data Structure

because it permits simultaneous access to values.

4.3. ENTANGLEMENT 131

4.3 Entanglement

Algorithms with irregular fine-grained parallelism are difficult to compose into
transactions that are large enough to be worthwhile executing concurrently. The
solution is to compose such work into larger transactions that can be rolled-
back to a previous state when conflicts are detected. Check pointing reduces the
amount of work wasted when a conflict occurs. Check pointing and roll-back
mechanisms enable the efficient concurrent execution of algorithms with irregular
fine-grained parallelism.

The state of an algorithm can be represented by multiple data structures. To
permit roll-back they must be check pointed at a moment in time when they are
mutually consistent.

The main contribution of this section is a technique for composing Immutable
Data Structures to support check pointing and roll-back. This section focuses
on composing Immutable Data Structures so that they record a history of the

algorithm they implement.

4.3.1 Fine grained irregular parallelism

The overhead of scheduling concurrent execution places a lower bound on the size
of a transaction that is worthwhile scheduling. Many algorithms exhibit irregular
parallelism which is fine-grained and they appear not to be worthwhile executing
concurrently. A solution to this problem is to compose the work into transactions
that are large enough to execute concurrently, but this increases the likelihood of
conflicts and increases the amount of work wasted when conflicts do occur.

When composing fine-grained work into large transactions it is often desirable
to create a check point to reduce the amount of work wasted when conflicts occur.
The amount of wasted work is reduced by rolling-back to a state prior to the
conflict instead of entirely aborting a transaction. A mechanism for this check
points a consistent state of the algorithm, backtracks through previous states of
the algorithm when a conflict is detected and rolls-back to a consistent state of
the algorithm.

For example, consider an algorithm that removes an item from a queue, per-
forms a function on that item, which can conflict with an instance of the function
executing on another processor, and then places the result in a second queue.

This is typical of a wide range of problems that exhibit fine-grained parallelism,

132 CHAPTER 4. ACCESSING STATE

but for which no efficient concurrent algorithm is known. The operations on an
item may be regarded as a single transaction, but such a transaction can be too
small to be worthwhile scheduling. The presence of an item in one and only one
of the queues is an invariant of the algorithm. The algorithm is in a consistent
state only when this invariant is true. Check points should be taken at moments
in time when the invariants are preserved.

When executing an algorithm speculatively it might be necessary to discard
the speculative state, which can be represented by more than one data structure,
and re-start execution from some consistent past state of the algorithm. The
roll-back mechanism must roll-back so that it is not possible to observe an inter-
mediate state in which one data structure involved in the algorithm is rolled-back
and another not. One problem is to find a check pointing mechanism which can
ensure that all of the data structures involved in the algorithm are consist at
the moment the check point is taken. Another problem is to find a backtracking
mechanism that can backtrack through states of the algorithm to a previously
check pointed state. Another problem is to ensure that there is the appearance

of instantaneous state transition during the roll-back.

4.3.2 The composition of Immutable Data Structures

The composition of fine-grained work into larger transactions can be achieved
by composing the Immutable Data Structures involved in the algorithm into a
single data structure. We call this technique Entanglement. In graph theory
the Entanglement of a directed graph is a measure of how strongly the cycles of
the graph are intertwined. In the context of Immutable Data Structures we take
this to mean the composition of multiple Immutable Data Structures into one
Immutable Data Structure through a process of adding links. Entanglement is
achieved by referencing the root address of one Immutable Data Structure from
the leaf of another Immutable Data Structure.

Expanding on our example, consider a process that removes lower case letters
from a queue, which we call the parameter queue, converts them to upper case
and places them on another queue, which we call the result queue. The presence
of a letter in one or other of the queues, but not both, is an invariant of the
algorithm. The queues are said to be in a consistent state when this invariant
is true. A consistent state of the algorithm can be check pointed by recording a

reference to one of the data structures in the leaf of the other. When a conflict

4.3. ENTANGLEMENT 133

N ERENENEEEY

LA B S

il

Figure 4.2: A pair of entangled queues is created by referencing the root
of one queue from the leaf of another. In this example letters are removed from
the parameter queue, shown in the lower part of the figure, converted to upper
case and inserted into the result queue, shown in the upper part of the figure. In
version V0 of the entangled data structure the parameter queue contains the lower
case letter g. In version V1 the letter g has been removed from the parameter
queue and the upper case letter G has been added to the result queue. The new
root of the parameter queue is stored together with the converted letter in the
result queue. In this figure prior versions of the parameter queue are hidden for
clarity. The links from the leaves to the roots are dotted and the most recently
created path is shaded.

134 CHAPTER 4. ACCESSING STATE

is detected the reference in the leaf affected by the conflict indicates the root of
the entangled structure at the moment in time prior to the conflict. The data
structures can be rolled back to a consistent state by restoring this root. When
the root is restored the invariants of both data structures are preserved. To
ensure that the roll-back appears instantaneous the root of the entangled queues
is modified atomically.

Figure 4.2 illustrates an operation on the two logically separate data structures
which have been combined into a single structure by Entanglement.

Back tracking through past versions of an entangled data structure can be
achieved by examining only the most recent version. A leaf created by a conflict-
ing operation will contain a reference to the root of the entangled structure at
the moment in time prior to the conflict.

At their most basic, Memory Transactions allow the atomic modification of
discontinuous memory locations. Immutable Data Structures permit the atomic
modification of discontinuous memory locations which are part of the same data
structure and Entanglement extends this to locations which are not part of the
same logical data structure but which are affected by the same algorithm. Lin-
earizability is a composable property so the functions of our combined Immutable
Data Structures may also be linearizable.

Entanglement is a low overhead check pointing technique which works by
recording the execution of an algorithm immutably instead of logging state changes.
Entanglement satisfies our requirements for a solution to the problem presented
by fine-grained parallelism as it permits backtracking through the entangled data
structures and atomic roll-back to a state in which all the data structures involved

in the algorithm are consistent.

4.3.3 Entanglement and Persistence

An Immutable Data Structure can be entangled with a past version by adding a
reference to the root node of the version it was path copied from. This creates a
link between a version of the data structure and a past version. A self-entangled
Immutable Data Structure is persistent because past versions can be accessed by
a look-up function which follows the links.

Figure 4.3 illustrates an immutable directed min-tree which is entangled in

such a way that past versions can be accessed.

4.3. ENTANGLEMENT 135

VO

Figure 4.3: A persistent Directed min-tree is created by referencing the root
of a version from the leaf of the past version from which the path was copied. In
this example each leaf is linked to the version of the data structure from which
it was created by path copy. The links from the leaves to the roots are dotted
and the most recently created path is shaded. The Immutable Data Structure is
persistent because past versions are accessible by a look-up function which follows
these links.

136 CHAPTER 4. ACCESSING STATE

4.3.4 Previous work

Check pointing and roll-back mechanisms have been proposed as solutions to the
problem of fine-grained concurrency many times before [RW02],[HKO08],[WS08].
The primary drawback of each of these mechanisms is the overhead of check
pointing and of backtracking.

Conchon describes how a semi-persistent data structure can be used for check
pointing and roll-back [CF08§].

When applied to a single data structure entanglement is a look-up mechanism
which makes a data structure persistent. A data structure that allows access to
past versions only through entanglement is semi-persistent because only ancestors
of the most recent version may be accessed. When applied to multiple data
structures entanglement permits the composition of two data structures, which

may not be persistent, to form a persistent data structure.

4.3.5 Low overhead check pointing

In a typical implementation of check pointing, changes are logged and values
are written to memory more than once. The sources of the overhead of check
pointing are similar to those of maintaining duplicate copies of shared state. In
our implementation data is written to memory once, so the overhead of check
pointing is reduced to that of storing a root address in each leaf of the entangled
data structure. Entanglement provides a mechanism for check pointing at very
little additional cost because immutable data is written just once.

In a typical implementation, backtracking is a serial process which takes place
while progress of the algorithm on other processors is halted. In our implementa-
tion the examination of past versions and the detection of conflicting operations
can take place in parallel with the actions of the algorithm itself.

In a typical implementation, roll-back requires that the progress of the al-
gorithm is halted so roll-back does not have concurrent semantics. In our im-
plementation roll-back only affects those transactions involved in the conflicting
operation. Entanglement provides a check pointing mechanism with intuitive con-
current semantics because events occurring during the execution of the algorithm

are check pointed rather than system states.

4.4. MINIMUM SPANNING TREE 137

4.4 Minimum Spanning Tree

The problem of finding the minimum spanning tree of a graph is typical of com-
binatorial problems which exhibit fine-grained irregular parallelism. Researchers
have been frustrated in their attempts to exploit this parallelism and for many
types of graph the fastest known algorithms are serial. To evaluate our check
pointing technique we measure the performance of a concurrent implementation
of a minimum spanning tree algorithm that uses entangled Immutable Data Struc-
tures. We find that our concurrent implementation does not perform as well as
a serial implementation.

The problem is to determine the minimum spanning tree of a connected undi-
rected graph with weighted edges. The minimum spanning tree of a graph is an
acyclic sub-graph which connects all of the vertices and has the minimum weight.

Sedgewick explains the problem in detail and describes a number of serial
algorithms for computing the minimum spanning tree [Sed02]. The minimum
spanning tree problem is one of the most important in combinatorics. Ahuja
describes how many problems in network routing and linear programming are
related to the problem of finding the minimum spanning tree [AMO93].

A minimum spanning tree is the tree of edges T € G(V, E) with minimal

weight:

W(T) = Y W((uv))

(u,0)ET

where W ((u,v)) is the weight of an edge (u,v).

The main contribution of this section is the evaluation of an algorithm which
uses entangled Immutable Data Structures to facilitate the check pointing of
speculative execution. This section focuses on comparing the times taken to

determine the minimum spanning tree of an undirected planar graph.

4.4.1 Experiment

Prim describes an algorithm to determine the minimum spanning tree of a graph
[Pri57]. To evaluate our check pointing technique we compare the performance
of a concurrent implementation that uses entangled Immutable Data Structures
with a concurrent implementation that uses Software Transactional Memory. We

also compare these concurrent implementations with their serial counterparts.

138 CHAPTER 4. ACCESSING STATE

Prim’s algorithm is typically implemented using a mutable adjacency list to
represent the graph and its minimum spanning tree and a priority queue from
which minimally weighted edges are chosen. The implementation records whether
edges belong to the minimum spanning tree by storing a value, which is usually
referred to as a colour, as an edge property in the adjacency list. We call this
a Serial Graph Colouring Implementation of Prim’s algorithm. We use the ad-
jacency list and the Serial Graph Colouring Implementation of Prim’s algorithm
from the Boost graph library. Siek describes the format of the adjacency list in
detail [SLLO1].

Section 4.4.3 describes the experimental set up.

Section 4.4.4 describes the Serial Graph Colouring Implementation of Prim’s

algorithm.

We develop an implementation of Prim’s algorithm that uses a set, instead of
graph colouring, to represent the minimum spanning tree. We call this a Serial
No-Colouring Implementation of Prim’s algorithm. This serial implementation is
used to measure the effect that maintaining the minimum spanning tree in a set,
rather than in the adjacency list, has on the execution time of the algorithm. We
use a data structure from the C++ standard template library to implement the set
of edges representing the minimum spanning tree and we also use a priority queue
from the standard library [Jos99]. The graph is implemented by an immutable

adjacency list from the Boost library.

Section 4.4.5 describes the Serial No-Colouring Implementation of Prim’s al-

gorithm.

A Concurrent Graph Colouring Implementation of Prim’s algorithm must

ensure the correctness of concurrent accesses to the edge colours.

Section 4.4.6 explains why a Concurrent Graph Colouring Implementation of
Prim’s algorithm that executes efficiently on a Chip Multi-Processor is difficult

to construct.

Kang developed a concurrent implementation of Prim’s algorithm using Soft-
ware Transactional Memory [KB09]. We call this a Concurrent Graph Colouring
Implementation of Prim’s algorithm. The implementation allows some specula-

tive execution by lazily detecting conflicting accesses to the graph colours.

Section 4.4.7 describes Kang’s Concurrent Graph Colouring Implementation

of Prim’s algorithm.

4.4. MINIMUM SPANNING TREE 139

We develop a concurrent implementation of Prim’s algorithm which uses en-
tangled Immutable Data Structure to allow check pointing, backtracking and roll-
back to a previous state of the algorithm. We call this a Concurrent No-Colouring
Implementation of Prim’s algorithm. The implementation uses an immutable set,
to represent the minimum spanning tree, and an immutable priority queue, from
which minimally weighted edges are chosen. Both of these data structure are spe-
cialisations of the Canonical Binary Tree. The data structures are entangled to
facilitate check pointing. The graph is implemented by an immutable adjacency
list from the Boost library.

Section 4.4.9 describes the Concurrent No-Colouring Implementation of Prim’s

algorithm.

4.4.2 Results

Our experiment shows that the Concurrent No-Colouring Implementation of
Prim’s algorithm takes longer to determine the minimum spanning tree of a graph
than either the Serial Graph Colouring Implementation or the Serial No-Colouring
Implementation for all graph sizes. The Serial No-Colouring Implementation of
the algorithm takes about twice as long as the Serial Graph Colouring Implemen-
tation for all graph sizes.

Figure 4.4 illustrates a comparison of the elapsed time taken to determine the
minimum spanning tree of a graph.

The Concurrent No-Colouring Implementation does not return the memory
used by the Immutable Data Structures because they are persistent. Only 32 GB
of memory are available to contain the persistent data structures on the evalua-
tion hardware and this limited the maximum size of the graph whose minimum
spanning tree could be determined to 2'9 vertices.

The topology of the graphs representing the road maps of urban states differs
from those of more rural states. This accounts for some of the variation in elapsed
time taken to calculate the minimum spanning tree of states with similar numbers
of vertices.

This thesis does not make any claims about the absolute performance of Im-
mutable Data Structures. However, even when using 8 hardware threads the
Concurrent No-Colouring Implementation takes longer to calculate the minimum
spanning tree than either serial algorithm.

Section 4.4.10 describes how the performance of the Concurrent No-Colouring

140 CHAPTER 4. ACCESSING STATE

45 7

/
, /
/ /
- K / .
- , /
; /
/ /
. /

Elapsed time (seconds)
N
(&)

1.5

14 15 16 17 18 19 20
logo(Number of vertices)

Figure 4.4: Comparison of the elapsed time taken to calculate the mini-
mum spanning tree of planar undirected graphs representing road maps of US
states.

The elapsed time taken by the Serial Graph Colouring Implementation (+), the
Serial No-Colouring Implementation (x) and the Concurrent No-Colouring Im-
plementation (*) is plotted against varying graph sizes. We uses a log scale to
represent the number of vertices in the graph.

Eight hardware threads participate in the concurrent execution. Each hardware
thread executes on a dedicated processor. Figures given are the mean of 10
measurements.

4.4. MINIMUM SPANNING TREE 141

Implementation can be improved.

Kang provided results for a Concurrent Graph Colouring Implementation
which uses Software Transactional Memory [KB09]. Kang measured the elapsed
time taken to calculate the minimum spanning tree of a planar graph with 222
edges. Unfortunately, we were not able to calculate the minimum spanning tree
of a graph of this size so we cannot make a direct comparison with Kang’s result.

When a single hardware thread was used the elapsed time taken to determine
the minimum spanning tree was 1143 seconds. When using 8 hardware threads,
on the same core, a 14X speed-up was achieved. Kang attributed this super-
linear speed-up to the sharing of cache by the hardware threads. When using 64
hardware threads, on 8 cores, a speed-up of 61.5X was achieved.

Kang attributed 98.5% of the execution time of the Concurrent Graph Colour-
ing Implementation to the overhead of Software Transactional Memory. To over-
come this overhead 64 hardware threads were applied to the problem. Kang
concluded that “even with this level of scalability, our parallel algorithm runs
only at the comparable speed to the single-threaded case which does not incur
the Software Transactional Memory overhead” [KB09].

This thesis claims that the use of Immutable Data Structures can make con-
current programming easier. Kang described the difficulty of ensuring the cor-
rectness of the Concurrent Graph Colouring Implementation which uses locks to
ensure serialisable access to the graph colours “this [acquiring locks] can lead to
many complex scenarios that can cause race conditions, deadlocks, or other com-
plications, and it is far from trivial to write correct and scalable code” [KB09].
Our Concurrent No-Colouring Implementation of Prim’s algorithm requires no
synchronisation. It is not prone to race conditions, because all shared data is
immutable and it is not prone to deadlock because it does not block. Our Con-
current No-Colouring Implementation of Prim’s algorithm was simpler to develop

than the Concurrent Graph Colouring Implementation described by Kang.

4.4.3 Method

Demetrescu describes a set of planar graphs, representing road maps, which were
used during the DIMACS implementation challenge competition [DGJe09]. These
graphs are widely accepted as benchmarks for evaluating minimum spanning tree
algorithms. Each graph node represents an intersection between roads and each

graph edge is weighted with the distance between intersections. The graphs have

142 CHAPTER 4. ACCESSING STATE

an average of 2.7 edges per vertex.

We evaluate our algorithm using a Sun Ultra Sparc T2 server [vVRV109]. The
server contains a single Niagara Chip Multi-Processor which implements simul-
taneous multi-threading, it has 64 hardware threads and 8 physical processors.

Both the hardware and the graph data sets used in our evaluation are identical
to those used by Kang [KB09].

We use an immutable priority queue implemented by a Directed min-tree spe-
cialisation of the Canonical Binary Tree. The Canonical Binary Tree is balanced
but none of the optimisations, suggested in section 3.6.5 are implemented. We
also use an immutable set implemented by an interval tree specialisation of the

Canonical Binary Tree.

4.4.4 Serial Graph Colouring Implementation

Prim’s algorithm is based on an observation known as the graph cut property
[Pri57]. A graph cut partitions the vertices of a graph into two disjoint sets.
Given a cut in the graph, any edge between the two sets which has a minimum
weight belongs to some minimum spanning tree of the graph.

Prim’s algorithm grows a minimum spanning tree iteratively from a single
graph edge. The algorithm maintains a set of crossing edges, called the fringe,
which is the set of edges with one vertex in the growing minimum spanning tree
and one outside it.

Initially, both the minimum spanning tree and the fringe are empty. A single
vertex is added to the minimum spanning tree and all of the edges from this
vertex are added to the fringe. At each iteration the minimally weighted edge is
removed from the fringe and added to the growing minimum spanning tree. This
adds a new vertex to the minimum spanning tree and all of the edges from this
vertex to vertices that are not already in the minimum spanning tree are then
added to the fringe. The resulting fringe is processed by the next iteration. The
algorithm completes when the set of vertices outside the minimum spanning tree
is empty and edges in the minimum spanning tree connect all of the nodes in the
graph.

Prim’s algorithm can be implemented by using an adjacency list to represent
the graph. Each graph edge has an associated weight. The minimum spanning
tree is represented by a colour indicator associated with each edge. The fringe is

represented by a priority queue which contains references to edges in the adjacency

4.4. MINIMUM SPANNING TREE 143

list. The priority associated with an edge is the weight of that edge.

Serial Graph Colouring Implementations of Prim’s algorithm are among the
fastest known. Typically, high performance Serial Graph Colouring Implementa-

tions focus on improving the performance of the priority queue.

4.4.5 Serial No-Colouring Implementation

Prim’s algorithm can also be implemented by using a set to maintain the grow-
ing minimum spanning tree instead of colouring graph edges. We call such an
implementation a Serial No-Colouring Implementation because the adjacency list
does not have any mutable properties. The set contains references to edges in the
adjacency list and is used to determine whether an edge is part of the minimum

spanning tree.

The Serial No-Colouring Implementation of Prim’s algorithm uses three data
structures. The graph is represented by a constant adjacency list with weighted
edges. The fringe is represented by a priority queue which orders edges by weight.
The minimum spanning tree is represented by a set of edges. In our implementa-
tion the priority queue is implemented using a vector from the standard library

and the set is implemented using the standard map [Jos99].

The algorithm starts from a single node and adds edges to the minimum
spanning tree iteratively. The edge with the minimum weight is removed from
the priority queue and added to the set to indicate that it is part of the minimum
spanning tree. This adds a new vertex to the minimum spanning tree. The edges
including this vertex, which are not already present in the set, are added to the

priority queue to complete the iteration.

To determine whether an edge is part of the minimum spanning tree a set
look-up is performed. Typically, set look-up takes O(log(n)) time whereas ac-
cessing a mutable graph edge takes O(1) time, so there is a significant overhead
associated with looking up edges in a set. Consequently, it is not common to
implement Prim’s algorithm in this way. Our Concurrent No-Colouring Imple-
mentation maintains the minimum spanning tree an immutable set and uses a
constant adjacency list to avoid sharing mutable data. We implement the Se-
rial No-Colouring Implementation algorithm so that we can measure the effect of

maintaining the growing minimum spanning tree in a set.

144 CHAPTER 4. ACCESSING STATE

4.4.6 The concurrent implementation of Prim’s algorithm

A concurrent implementation of Prim’s algorithm may attempt to combine the
minimum spanning trees of sub-graphs, produced by multiple processors, to form

a larger minimum spanning tree.

Two sub-graphs are disjoint if they do not have any vertices in common. Two
sub-graphs are adjacent if they are disjoint and there is at least one edge joining
vertices which belong to different sub-graphs. The minimum spanning trees of
adjacent sub-graphs can be combined by including the minimally weighted joining
edge in the graph formed by their union. The minimum spanning trees of disjoint
sub-graphs can be combined easily only by growing them until they are adjacent.
The minimum spanning trees of overlapping sub-graphs are difficult to combine.
Ideally, the minimum spanning trees of adjacent sub-graphs should be identified

and combined.

The graph cannot be decomposed into disjoint sub-graphs before the algorithm
starts because this problem is more difficult than the minimum spanning tree
problem itself. Dor proves that the problem of decomposing a graph into disjoint

sub-graphs with no common edges is NP-Complete [DT92].

To permit the combination of minimum spanning trees created concurrently
an algorithm can check that their sub-graphs are disjoint each time a vertex is
added. This imposes a synchronisation overhead on the concurrent implementa-
tion. The implementation can speculate that sub-graphs are disjoint to reduce
the synchronisation overhead. However, it must be prepared to roll-back the

algorithm to the point at which adjacency first occurs.

A concurrent algorithm has the potential to demonstrate speed-up provided it
is faster to check and combine the minimum spanning tree of sub-graphs with the
growing minimum spanning tree than to grow the minimum spanning tree by the
corresponding amount. Once checked, the merging of minimum spanning trees
is straightforward. The problem is to create minimum spanning trees in such a
way that they can be combined without incurring a significant synchronisation

overhead.

4.4. MINIMUM SPANNING TREE 145

4.4.7 Concurrent Graph Colouring Implementation

Kang describes a Concurrent Graph Colouring Implementation of Prim’s algo-
rithm which uses Software Transactional Memory [KB09]. Kang’s implementa-
tion is an application which implements Memory Transactions rather than an
application developed within an existing Software Transactional Memory frame-
work.

Memory operations acting on the graph colours can cause race conditions,
so simultaneous access must be restricted. A naive implementation might seri-
alise every access to the colours but this effectively serialises the entire algorithm,
negating any benefit from concurrent execution. Kang uses Software Transac-
tional Memory to support speculation by buffering memory operations and de-
tecting conflicts. Conflicting accesses to the graph colours are rare so it can be
beneficial to speculate that a conflict did not occur.

Kang’s Concurrent Graph Colouring Implementation relies on the semantics
of memory transactions to avoid data races. Each thread colours the vertices
of its own minimum spanning tree and also colours all of the neighbours of the
marked vertices with a unique colour. The process of picking one vertex and then
applying an operation to its neighbours is encapsulated in a Memory Transaction.
Conflicts are detected by checking the colour of vertices in graph to determine
whether another processor has included the node in its minimum spanning tree.

Our experimental results are directly comparable to those of Kang because we
use identical graph data sets and identical hardware. Unfortunately, Kang was
not able to report concurrent speed-up because the overheads associated with

Software Transactional Memory exceed the benefits of concurrent execution.

4.4.8 Previous work

Boruvka described a concurrent algorithm to determine the minimum spanning
tree of a graph nearly a century ago [NMNO1]. However, realising speed-up from
concurrent execution has proved difficult. Chazelle describes an algorithm which
has the minimal amortised time [Cha00]. Vineet describes an algorithm that
makes use of a graphics processing unit. This speeds-up the calculation of some
very large minimum spanning trees by an order of magnitude when compared with
a serial implementation [VHPNQ09]. In practice, the fastest methods for finding

the minimum spanning tree of a dense graph are based on a serial implementation

146 CHAPTER 4. ACCESSING STATE

of Prim’s algorithm. Bazlamacci presents a survey of high performance minimum
spanning tree algorithms [BHO1]. In the fastest, the fringe is represented by a
priority queue based on a Fibonacci heap. Weiss describes the implementation
of a Fibonacci heap data structure in detail [Wei93].

Dice describes a Concurrent Graph Colouring Implementation of Prim’s algo-
rithm which uses Hardware Transactional Memory [DLMNO09]. Dice uses a form
of Hardware Transactional Memory known as speculative lock elision, which per-
mits speculative access to the graph colours, while relying on hardware to detect
conflicting accesses [RGO1]. Dice implements this algorithm on the Sun ROCK
processor [CCET09]. The implementation difficulty and the modest speed-up
observed may have been factors contributing the cancellation of the ROCK pro-

cessor, which we described in section 1.1.7.

4.4.9 Concurrent No-Colouring Implementation

We develop a Concurrent No-Colouring Implementation of Prim’s algorithm. One
processor is designated as the main processor and it grows the minimum spanning
tree of the entire graph. The other processors are designated as helper processors
and they build the minimum spanning trees of sub-graphs. The main processor
occasionally checks whether the minimum spanning trees of these sub-graphs
overlap with the growing minimum spanning tree. When overlap is detected the
sub-graphs produced by the helper processors are rolled-back to the state they
were when they were adjacent to the growing minimum spanning tree. They
are then combined with the growing minimum spanning tree and their fringes are
added to the fringe of the growing minimum spanning tree. The helper processors
contribute to reducing the elapsed time taken to calculate the minimum spanning
tree.

We use the Serial No-Colouring Implementation of Prim’s algorithm on the
main processor because it makes the merging of the sub-graphs built by the
helper processors easier. However, we could have chosen a Serial Graph Colouring
Implementation, in which case only the main processor would access the graph
colours.

The helper processors create minimum spanning trees in such a way that the
execution of their algorithm can be rolled back to a previous state. The algorithm
executing on the helper processors is also a Serial No-Colouring Implementation

of Prim’s algorithm. It uses an immutable set to identify edges in the minimum

4.4. MINIMUM SPANNING TREE 147

spanning tree and an immutable priority queue to represent the fringe. Both
of these Immutable Data Structures are specialisations of the Canonical Binary
Tree. The immutable set and the priority queue are entangled so that they can

both be rolled-back to a mutually consistent state.

The Immutable Data Structures are entangled by storing the root of the im-
mutable priority queue in the leaves of the immutable set. Each leaf contains an
edge and a reference to the root of the past version of the priority queue from
which it was removed. The leaf also contains the corresponding root of the past
version of the set. This entanglement check points the state of the algorithm
at the start of each iteration. The check point allows the set and the priority
queue to be restored to a consistent state in which the set represents a minimum

spanning tree and the priority queue its fringe.

At some moment in time the minimum spanning trees of sub-graphs built
in isolation are checked by the main processor and possibly combined with the
growing minimum spanning tree. The frequency at which the minimum spanning
trees of sub-graphs are checked is a heuristic of the algorithm which does not

affect its correctness.

If necessary, the main processor examines the set produced by a helper pro-
cessor and backtracks through past versions by traversing the leaves of the set.
The algorithm must backtrack to the moment in time when the first common
edge was added. An ordinal number is used to determine the first common edge.
Each iteration of Prim’s algorithm performed by the helper processor causes a
process-unique ordinal number to be incremented. This ordinal number is stored
in a leaf of the set. The first common edge is the common edge with the lowest

ordinal number.

The main processor does not block the execution of the helper processors
while backtracking. The data structures produced by the helper processors are
immutable and can be examined by the main processor without requiring syn-

chronisation.

When backtracking detects overlap the state of the algorithm is rolled-back
to the point at which the first common edge was added. The traversal finds
the leaf containing a common edge with the lowest ordinal number. This leaf
contains a reference to the past version of the set which represents the minimum
spanning tree of a sub-graph which is adjacent to the growing minimum spanning

tree. This leaf also contains a reference to the version of the priority queue which

148 CHAPTER 4. ACCESSING STATE

represents the fringe of the minimum spanning tree of the sub-graph.

A merge process combines the past version of the minimum spanning tree of
the sub-graph with the growing minimum spanning tree and the past version of
the fringe of the sub-graph with the fringe of the growing minimum spanning
tree. The helper processor is stopped after the merge to reduce contention in the

path to memory.

4.4.10 The performance of the Concurrent No-Colouring

Implementation

The performance of a concurrent implementation of Prim’s algorithm is depen-
dent on both the topology of the graph and the choice of starting vertices. Heuris-
tics can guide the choice of starting vertices used by the helper processors. Our
concurrent implementation chooses the starting vertices for each processor at ran-
dom. We have focused exclusively on planar graphs, so the performance of the
Concurrent No-Colouring Implementation when applied to other graph topologies
remains to be investigated.

The elapsed time taken by the Concurrent No-Colouring Implementation of
Prim’s algorithm is dependent on heuristics such as the frequency at which the
main processor checks whether the minimum spanning trees of sub-graphs, pro-
duced by the helpers, overlap with the growing minimum spanning tree. The
checking process is performed by the main processor. There is a trade off be-
tween the frequency of checking and the benefit from merging a minimum span-
ning tree produced by a helper. We found that the best results were obtained
when the main processor checked for overlap infrequently. Our implementation
adds 2! nodes to the growing minimum spanning tree between checks. There
is little chance of overlap when the minimum spanning trees are small and little
to be gained from merging sub-graphs when the growing minimum spanning tree
is near completion. Checking for overlap is probably most advantageous when
about one quarter of the planar graph is covered by the minimum spanning trees
of sub-graphs. However, we did not attempt to find the optimum interval because
it is dependent on the topology of the graph.

When processing a large graph a high proportion of memory accesses result
in cache misses. Our implementation uses only 8 hardware threads, one on each

physical processor. We found that using additional hardware threads did not

4.4. MINIMUM SPANNING TREE 149

reduce the elapsed time taken to determine the minimum spanning tree. This
indicates that the elapsed time is bound by the performance of the memory
subsystem. Jacob describes how the Niagara processor in the Sun Ultra Sparc
T2 server has four memory controllers and uses fully buffered DIMM memory to
permit fast processing for frequent cache misses [Jac09]. However, we also carried
out experiments using an Intel core i7 system. We found that for graphs of less
than 2'® vertices the elapsed time taken by the Intel system was less than that
obtained by processing the same graph on the Sun Ultra Sparc T2. The restricted

memory available on the Intel system prevented a comparison for larger graphs.

During the execution of Prim’s algorithm edges are checked for inclusion in the
minimum spanning tree before being added to the fringe. However, when fringes
are merged the resulting fringe can contain edges in common with the merged
minimum spanning trees. These edges make the fringe larger than necessary
and introduce redundant iterations of the algorithm. Periodic fringe compaction
can improve the performance of the algorithm by removing these edges from the

priority queue.

The immutable priority queue implementing the fringe can be compacted by
creating a new version which does not contain any edges in common with the
set implementing the minimum spanning tree. Compaction does not affect the
Entanglement between the data structures, it makes subsequent versions of the
priority queue smaller but it does not return memory. Our backtracking algorithm

requires that all past versions of both the priority queue and the set are retained.

We chose not to compact the fringe of the minimum spanning tree grown
by the main processor. Instead, we compact the fringes of minimum spanning
trees grown by the helper processors. The immutable priority queue is compacted
after adding 2'° nodes. We did not attempt to find the optimum interval between

fringe compactions because it is dependent on the topology of the graph.

The Sun Ultra Sparc T2 server has 32 GB of main memory. Our algorithm
does not return any memory so the size of graphs considered during the evaluation
are restrained by the available memory. There are many ways that the memory
restraint could be lifted. For example, the helper processors could return the
memory occupied by a sub-tree after it is merged with the growing minimum

spanning tree.

The size of the node used to implement the Canonical Binary Tree and the

150 CHAPTER 4. ACCESSING STATE

number of nodes accessed while balancing of the tree are important factors af-
fecting the performance of the No-Colouring Implementations because they con-
tribute to the effective memory bandwidth of the implementation.

Section 6.3.6 describes how node size affects the performance of algorithms

which use specialisations of the Canonical Binary Tree.

Chapter 5
Concurrency Control

Distributed concurrency control is scalable but centralised concurrency control
is not. Transactional Memory systems use centralised concurrency control to
ensure consistent access to shared state but a scalable concurrent system should
use distributed concurrency control to ensure consistent access to a particular
object. This chapter describes how a distributed concurrency control protocol
can serialise access to an Immutable Data Structure.

Section 5.1 identifies the choice of concurrency control mechanism as one of
the most significant decisions taken when designing a concurrent system.

Section 5.2 describes how functions acting simultaneously on an Immutable
Data Structure can be serialised.

Section 5.3 describes how an Immutable Data Structure can be made conflu-

ently persistent.

151

152 CHAPTER 5. CONCURRENCY CONTROL

5.1 Distributed Concurrency Control

Transactional Memory systems require the application program to interact with
a centralised transaction manager but this interaction makes programming diffi-
cult and restricts scalability. This section proposes using distributed transaction
management to ensure the correct concurrent execution of Memory Transactions.
Distributed transaction management makes concurrent programming easier and
concurrent systems more scalable.

The main run-time component of a Transactional Memory system is the trans-
action manager which ensures the correct concurrent execution of Memory Trans-
actions. Correctness is usually taken to mean that the result of the concurrent
execution is equivalent to the result obtained by executing the transactions in
some serial order. A transaction manager ensures serialisability by enforcing a
concurrency control protocol and the choice of protocol dictates the design of the
transaction manager.

Section 5.1.3 introduces Transaction management.

The main contribution of this section is the observation that the correct con-
current execution of Memory Transactions can be ensured without centralised
transaction management. This section focuses on ensuring the serialisable execu-

tion of functions acting on an Immutable Data Structure.

5.1.1 Centralised Concurrency Control

Centralised transaction management restricts the scalability of a concurrent sys-
tem as some part of the management processing is necessarily serialised. As
the number of concurrent processors increases the time spent within the seri-
alised part grows and eventually dominates the execution time of the concurrent
system. Amdahl’s law imposes restrictions on the scalability of a system with
centralised transaction management.

A concurrent application communicates with the transaction manager to sig-
nal that it is ready to commit a transaction and the transaction manager then
responds. This two way communication cannot be easily hidden by abstraction.
The orchestration of communication with the transaction manager makes con-
current programming difficult.

Centralised transaction management makes it difficult for programmers to use

5.1. DISTRIBUTED CONCURRENCY CONTROL 153

Memory Transactions in existing programs. To make use of Memory Transac-
tions a programmer must adapt a program to fit into a transaction processing
framework. This is an obstacle to the integration of Memory Transactions into
existing software and it is a barrier to the adoption of Transactional Memory.
The solution to these difficulties should ensure the serialisability of concurrent

Memory Transactions without requiring a centralised transaction manager.

5.1.2 Distributed Concurrency control

Distributed transaction management is scalable because it does not require a
centralised mechanism to enforce concurrency control. It makes concurrent pro-
gramming easier because programmers do not need to coordinate the applica-
tion’s interaction with a centralised system and it makes the use of Memory
Transactions in existing applications easier by alleviating the need to integrate a
concurrent application into a centralised transaction management framework.

A distributed transaction manager can make the decision whether to commit
or abort a transaction independent of operations taking place on other processors
because a distributed concurrency control protocol requires only information local
to a processor. It does not depend on any information about concurrently active
transactions so in a distributed system it is not necessary to orchestrate the
interaction of transactions on multiple processors. Each processor can implement
transaction management independently.

A distributed transaction manager can make the decision whether to com-
mit or abort a transaction using only local information about the transactions
that affect an object. It does not depend on information about accesses to any
other objects so in a distributed system each transaction manager can maintain
information about the objects that it manages and go about making its deci-
sions independent of the action of other transaction managers. Each object can
implement transaction management independently.

A distributed transaction manager does not attempt to serialise access to
multiple objects. Groups of objects that require mutually consistent access are
logically connected and should be combined into a single object for the purposes
of concurrency control.

A fully distributed concurrency control protocol requires no communication
between transaction managers whatsoever as it can be implemented on a per

processor per object basis.

154 CHAPTER 5. CONCURRENCY CONTROL

5.1.3 Transaction Management

Database systems divide transaction management into three distinct tasks: con-
currency control, contention management and scheduling. Concurrency control
is the task of ensuring correct concurrent execution by enforcing serialisability.
Contention management is the task of guaranteeing progress. Scheduling is the
task of load-balancing the execution between processors. We make a distinction
between these tasks and consider each independently. However, Transactional
Memory systems tend not to treat these aspects of transaction management as
distinct. Consequently, transaction management in Transactional Memory sys-
tems tends to be difficult to characterise.

A transaction manager ensures that concurrent execution is correct by ensur-
ing that it is equivalent to a serial execution. Determining whether a concurrent
execution is serialisable is a NP-Complete problem [Pap79]. A transaction man-
ager enforces a concurrency control protocol which ensures that all conforming
transaction schedules are serialisable.

A transaction manager applies the rules of the concurrency control protocol
to determine whether a transaction can commit or not. A concurrency control
protocol can be viewed as a set of invariants and a binary function which en-
sures them. In the Transactional Memory literature the action of this function is
referred to as validation.

A concurrency control protocol can be enforced either pessimistically, by a
scheduler which checks that each operation conforms to the invariants of the
concurrency control protocol before it is executed, or optimistically, by a certi-
fier that enforces the concurrency control protocol when a transaction commits.
The Transactional Memory literature refers to pessimistic concurrency control
as eager validation and optimistic concurrency control as lazy validation. Many
Transactional Memory systems employ mixed protocols detecting some types of
conflict eagerly and others lazily.

A concurrency control protocol considers conflicting read and write operations
acting on variables. These conflicts can be either between a read and a write
or between two writes. Different concurrency control protocols can be applied
independently to each type of conflict. A concurrency control protocol considers
conflicts between these operations without regard to the values of the variables.
Transactional Memory systems can be roughly divided into those which regard

the variables as objects and those which regard them as memory words.

5.1. DISTRIBUTED CONCURRENCY CONTROL 155

A transaction certifier requires a record of the read and write operations on
variables and the transactions that issued them. The association between vari-
ables and transactions can be maintained by placing a transaction identifier within
each affected object. It can also be maintained by associating a transaction with
a list of addresses or object identifiers representing its read and write set. A
certifier also requires meta-data, such as time stamps, relating to the operations
on each variable.

The interaction between weakly isolated transactions is complex so concur-
rency control is simplified by strong isolation. The validation process is made
simpler if it is known that all the values read by a transaction were written by

transactions that have already committed.

5.1.4 Previous work

Bernstein comprehensively describes concurrency control and transaction man-
agement in a book entitled ‘Concurrency Control and Recovery in Database Sys-
tems’ [BHG87]. Ozsu describes distributed transaction management and dis-
tributed concurrency control in database systems [OV99].

Kotselidis develops the idea of distributing Memory Transactions across a
computing cluster [KAJT07]. Hammond describes the TCC protocol which is
a centralised broadcast based concurrency control protocol enforced by a cen-
tralised transaction manager [HCWT04]. Kotselidis describes a centralised broad-
cast concurrency control protocol based on the TCC protocol which ensures the
serialisability of transactions both within a Chip Multi-Processor and across the
cluster. However, in a computing cluster the latency and bandwidth restrictions
of Inter-Processor Communication are more severe and the problems created by
centralised transaction management are more apparent than in a Chip Multi-
Processor. Kotselidis found that the centralised nature of transaction manage-
ment made concurrent programming difficult and restricted the scalability of the
system [KAJT08]. These problems were not easily overcome despite a significant

engineering effort.

5.1.5 Time Stamp Ordering

There are several distributed concurrency control protocols described in the liter-

ature and each can be applied independently to different types of conflict. Both

156 CHAPTER 5. CONCURRENCY CONTROL

the Time Stamp Ordering protocol and Reed’s Multi-version Time Stamp Order-
ing protocol can be implemented without blocking so a distributed transaction
manager can enforce either concurrency control protocol [BHG87] [Ree79].

Pessimistic concurrency control requires fine-grained memory serialisation and
a strongly coherent memory model. As the number of processors on a Chip
Multi-Processor increases the overhead of implementing fine-grained memory se-
rialisation in hardware increases [HP06]. The Transactional Memory literature
therefore makes a strong case for optimistic concurrency control [HLR10].

The Time Stamp Ordering concurrency control protocol can be enforced opti-
mistically by a Time Stamp Ordering certifier which associates each transaction
with a unique monotonically increasing time stamp. The certifier maintains a
set containing the variables read and written by a transaction and also associates
each variable with the time stamp of the transaction that wrote the variable and
the highest time stamp of any transaction to have read the variable. When a
transaction commits the certifier examines the read and write time stamps of all
of the variables affected by the transaction and if the operations conform to the

protocol then the transaction can commit, otherwise it must be aborted.

5.1.6 Programmer productivity

Ease of problem diagnosis is an important contributor to overall programmer pro-
ductivity. It is often very difficult to diagnose problems in a concurrent system
where concurrency control is enforced by a locking protocol because it can be
difficult to determine which transaction wrote a particular value to a variable.
When Time Stamp Ordering is used as a concurrency control protocol transac-
tions appear to occur in the order of their starting time stamps. The order in
which transactions are executed can be recorded and this aids the diagnosis of
any problems that occur when a transactional system is executing concurrently.
The order of the memory operations at the time the problem occurred can be
determined using from the read and write time stamps associated with variables
so it is possible to diagnose a problem from a core dump taken at the moment in
time that a problem occurred.

Ease of problem reproduction is an important contributor to overall program-
mer productivity. It is often very difficult to reproduce a problem in a concurrent
system where concurrency control is enforced by a locking protocol because the

serial order, to which the execution should be equivalent, may be unknown. When

5.1. DISTRIBUTED CONCURRENCY CONTROL 157

Time Stamp Ordering is used as the concurrency control protocol the serial order
is given by the order of the transaction time stamps so it is possible to reproduce
problems by executing the transactions serially in the order given by their time

stamps.

158 CHAPTER 5. CONCURRENCY CONTROL

5.2 Serialisability

A transaction manager should ensure that the effects of functions accessing an
Immutable Data Structure are equivalent to those of a serialisable execution.
Functions acting on an Immutable Data Structure can be mapped onto abstract
read and write operations on variables and a concurrency control protocol can
be enforced on these operations to ensure serialisability. The protocol permits
functions to act on an Immutable Data Structure simultaneously, although not
all of them succeed.

Functions acting concurrently on an Immutable Data Structure can be made
linearizable but enforcement of this property restricts scalability because when
two functions simultaneously act on the same data structure only one of them
is successful. To improve scalability functions should be able to simultaneously
act on the same data structure successfully. The problem is how to ensure the
serialisability of functions that simultaneously act on a data structure?

The main contribution of this section is a technique for making functions
simultaneously acting on an Immutable Data Structure serialisable. This section
focuses on mapping these functions onto abstract read and write operations on

the variables considered by a concurrency control protocol.

5.2.1 Simultaneous access

This section considers how two functions can be permitted to act simultaneously
on an Immutable Data Structure.

When functions simultaneously access a semantically linearizable Immutable
Data Structure only one of them succeeds.

Section 5.2.3 discusses the semantics of functions concurrently accessing an
Immutable Data Structure.

The property of immutability allows the implementation of a mechanism that
permits simultaneous access while ensuring that the actions of one function ap-
pear to precede those of the other.

Section 5.2.4 discusses the semantics of functions simultaneously accessing an
Immutable Data Structure.

The problem of ensuring the serialisability of functions which simultaneously
access shared data has been successfully solved in the context of database sys-

tems. A database system ensures the correct concurrent semantics of transactions

5.2. SERIALISABILITY 159

simultaneously acting on a relational table by serialising the file operations on
the records that implement it. The file operations on these records are mapped
to abstract read and write operations and the transaction manager enforces a
concurrency control protocol on these operations to ensure that their effect is
equivalent to a serial execution. In a database system the variables on which the
concurrency control protocol acts are records and the operations that it consid-
ers are file operations. The records are, typically, the leaves of a B+tree data
structure which maintains the application data. There is a layer of abstraction
between a database table and the B+4tree which implements it, so there is a com-
plex relationship between a transaction expressed in SQL and the abstract read

and write operations considered by the concurrency control protocol [GR92].

5.2.2 Implementing Concurrency Control

The problem of ensuring the serialisability of functions simultaneously accessing
an Immutable Data Structure is one of mapping the functions onto a concurrency
control protocol and enforcing that protocol.

A concurrency control protocol is normally expressed in terms of a history of
abstract read and write operations on a system of variables so the functions must
first be mapped to operations on a set of variables.

Section 5.2.6 describes how an Immutable Data Structure is mapped onto
variables for the purposes of concurrency control.

Section 5.2.7 describes how the functions acting on the Immutable Data Struc-
ture are mapped onto abstract read and write operations on variables.

The concurrency control protocol is enforced by a validate function that en-
sures that conflicting operations conform to the protocol. Functions which contain
non-conforming operations are rejected.

Section 5.2.8 describes how conflicting operations can be detected by a validate
function.

A concurrency control protocol can be expressed as a set of invariants on
meta-data associated with abstract read and write operations. The Time Stamp
Ordering concurrency control protocol requires that these abstract read and write
operations are associated with time stamp meta-data which the functions collect
and record.

Section 5.2.9 describes how information about the operations can be recorded

as meta-data within an Immutable Data Structure and how the Time Stamp

160 CHAPTER 5. CONCURRENCY CONTROL

Ordering concurrency control protocol can be enforced.

5.2.3 Concurrent semantics

Immutable Data Structures have the property of structural linearizability. Struc-
tural modifications take place in isolation and appear to be atomic so no matter
which functions are concurrently applied to the data structure the resulting struc-
ture is always a valid structure. However, the property of structural linearizability
does not endow the ADT presented by the data structure with any meaningful
concurrent semantics. The concurrent behaviour of a structurally linearizable
data structure is uncertain because it may not reflect the action of all of the
functions that have acted upon it.

An Immutable Data Structure can be made semantically linearizable which
ensures that concurrently executing functions appear to take place at a single
moment in time. No matter which functions are concurrently applied to the data
structure the resulting structure is equivalent to some serial execution of those
functions. The concurrent semantics of a semantically linearizable Immutable
Data Structure are intuitive because functions appear to occur in some serial
order. However, only one of the functions simultaneously accessing the Immutable
Data Structure is successful and this limits scalability.

An Immutable Data Structure that permits tardy read access to past ver-
sions while ensuring the serialisability of mutating functions has the property of
partial persistence. This ensures that mutations appear to take place at a sin-
gle moment in time but the result of non-mutating functions do not necessarily
reflect the latest version of the data structure. The concurrent semantics of a par-
tially persistent data structure are easy to understand and can be useful. Some
applications require that mutations are serialised to ensure that a data structure
eventually reflects their effects, while permitting tardy read accesses. Partial per-
sistence can improve the scalability of concurrent applications because mutating
and non-mutating functions can execute at the same time.

For example, communication routers usually map symbolic names to IP ad-
dresses using a map based data structure called a PATRICIA trie [Mor68]. The
map is read each time a message is processed, which occurs frequently, but it
is only written when new IP addresses are added, which happens rarely. If the
penalty for an incorrectly routed message is small then a partially persistent

map can be appropriate. A partially persistent map permits read-only and write

5.2. SERIALISABILITY 161

accesses to take place simultaneously, while serialising writes. It separates the
concerns about the structure of the data, which is ensured by serialising access
to the root, from both concerns about the semantic order of modifications, which

is ensured by serialising writes, and concerns about the routing of messages.

5.2.4 Simultaneous semantics

This section considers the simultaneous behaviour programmers might expect
from an ADT.

Deque

The most desirable simultaneous behaviour for a deque would be for it to permit
serialisable simultaneously accesses to both ends. This behaviour can be described
in terms of the serialisable access to two variables, each representing a different
end of the queue.

For example, a Producer Consumer Queue is an application of a deque used
to communicate between concurrent processes. One process inserts elements on
one end of the queue and another process removes them from the other end. It

is desirable that processes can simultaneously insert and remove elements.

Map

The most desirable simultaneous behaviour for a map would be for it to permit
simultaneous access to different groups of elements while ensuring that the ac-
cesses to a single group of elements are serialisable. This can be described in
terms of the serialisable access to variables.

For example, fine-grained serialisability can be ensured by associating a small
discrete group of elements with a variable and coarse-grained serialisability can

be ensured by associating a larger discrete group with a variable.

Priority queue

The most desirable simultaneous behaviour for a priority queue would be for
it to permit simultaneous insertion of elements into the queue while ensuring
that the highest priority element is removed in serialisable order. The desirable

behaviour can be described in terms of the serialisable access to two variables,

162 CHAPTER 5. CONCURRENCY CONTROL

one representing the highest priority element and the other representing the rest

of the priority queue.

For example, an event scheduler is an application of a priority queue used
to communicate between concurrent processes. A process requesting an event
inserts an element onto the priority queue. Another process services the queue
by removing the highest priority element from the priority queue. It is desirable
that elements can be inserted by one process while the highest priority element
is removed by another. The insertion of elements onto the priority queue should
be serialisable and the removal of the highest priority element should also be

serialisable but it is not necessary to impose a serial order on all operations.

Vector

The most desirable simultaneous behaviour for a vector is semantic linearizability.
A mutating function has the potential to modify the relationship between the
ordinal numbers and values of any element in the data structure so simultaneous
access cannot be permitted. The desirable behaviour can be described in terms

of the serialisable access to a single variable representing the entire vector.

5.2.5 Previous work

The problem of permitting simultaneous access to the data structures used in
on-line gaming is commercially important and has received significant attention.
Multi-player on-line game applications are usually constructed around a massive
aggregate data structure called the game tree. The game tree contains informa-
tion about all of the objects within the game such as players and weapons and
their relationships. Actions in the game, such as a player dropping a weapon and
another player picking it up, are represented by actions on the game tree. Access
to the game tree is typically serialised by mutual exclusion. Sweeney identifies
the serial nature of actions on the game tree as a significant obstacle restricting
the performance of on-line games [Swe06]. Gajinov describes how Transactional
Memory can be used to improve the performance of an on-line game by allowing
actions on the game tree to execute speculatively [GZUT09]. The challenge is to
ensure correctness while permitting multiple functions simultaneous access the

data structure.

5.2. SERIALISABILITY 163

Figure 5.1: Labelling of variables in the cap of an Immutable Data
Structure. The variables in the cap of an Immutable Data Structure are labelled
11, I, Ir, c, rl, r and rr. The shaded path represents new instances of the variables.
The triangles represent subtrees suspended by the cap.

5.2.6 Variables

For the purposes of concurrency control an Immutable Data Structure can be
regarded as a system of variables. A concurrency control protocol ensures the
correct concurrent semantics of abstract read and write operations acting on
these variables. The functions implemented by the Canonical Binary Tree do not
maintain any mutable state so variables must be maintained immutably within
the Immutable Data Structure itself. The relative position of a vertex to the root
can be regarded as a variable and the annotation of a vertex can be regarded as
its value. A variable can have different values in each version of the data structure

even though the vertices that implement it are immutable.

Figure 5.1 illustrates the labelling of variables within a tree. Each variable
represents a position relative to the root. The value of a variable can only be

altered by creating a new version of the tree.

For the purposes of concurrency control it is only necessary to consider the
variables represented by a subset of the relative positions in the tree that we call
the cap. A version of the Immutable Data Structure can be larger or smaller
than the cap so a vertex may or may not correspond to a variable in cap. When

the data structure is larger than the cap the variables represented by the leaves

164 CHAPTER 5. CONCURRENCY CONTROL

of the cap act as proxies for the subtrees which they suspend.

The desirable behaviour of a deque can be described in terms of the serialisable
access to three variables 1, r and c. Variables 1 and r represent the front and back
of the deque respectively and the variable ¢ represents the empty queue.

A map can be represented either at a fine level of granularity, or at a coarse
level of granularity. The size of the cap determines the level of granularity.

A priority queue can be represented by two variables. The variables ¢ and 1
represent the highest priority element and the rest of the priority queue respec-
tively.

A sequence can be represented by a single variable c.

5.2.7 Functions and operations

When a variable is read or written information about the operation is recorded in
the data structure. A variable in the cap is either read, written or unaffected by
a function. A function is implemented by a path copy which creates new nodes.
A node records the type of abstract read and write operations that created it,
along with the time stamp meta-data required to enforce the concurrency control
protocol.

For the purposes of concurrency control the annotation of a node corresponds
to the value of a variable. An operation is regarded as writing a variable if
the annotation associated with its relative position in the tree changes. A read
operation records an access to a variable which did not change its value. When
the annotation associated with a relative position that is not in the cap changes
a write operation is recorded as acting on the variable that corresponds to the
node’s most junior ancestor in the cap.

A query() function causes every variable on the path to be read but it is only
necessary to record reads in nodes corresponding to variables in the cap. The
nodes on the path read by the query function that correspond to variables in the
cap are copied so that read operations can be recorded.

The insert() and delete() functions also read every variable on the path but
they also cause the annotation of some of the variables on the path to change.
The variables in the cap act as proxies for the variables in the subtrees they
suspend so a change in the annotation of a node at some point on the path is
represented by a write operation on a variable within the cap.

Figure 5.2 illustrates the abstract read and write operations on variables

5.2. SERIALISABILITY 165

y

ENERIED

Figure 5.2: Operations on variables in the cap of a deque. The cap con-
tains three variables 1, r and c. The function Push_front(q) acts on version V0
containing {r, s, t,u,v,w} to create version V1 containing {q,r, s, ¢, u,v,w}. The
operations {W/[l], R|c]} are recorded in the vertices corresponding to the cap.
The function Front() acts on version V1 to create version V2. The vertices cor-
responding to the cap are copied to record the operations {R[l], R[c]} performed
by this non-mutating access. The function Push_front(p) acts on version V2 to
create version V3 containing {p, q,r,s,t,u,v,w}. The operations {W]l], R[c|}
are recorded in the vertices corresponding to the cap.

166 CHAPTER 5. CONCURRENCY CONTROL

Cap ADT Semantics Access

0 All Structural linearizability | Uncontrolled
{c} All Semantic linearizability | Serialised
{c} All Partial persistence* Tardy reads
{l,c,r} Deque Serialisable Simultaneous
{L,c} Priority queue | Serialisable Simultaneous
{l,c,r} Map Fine grain serialisable Simultaneous
{IL,Ir,1,c, | Map Coarse grain serialisable | Simultaneous
rlrrr}

Table 5.1: Cap topology and granularity of concurrency. The topology of
the cap controls the granularity at which concurrency control is enforced. The
variables represented by the cap are listed in the first column. The third column
describes the semantics of the ADT. The permitted access is listed in the forth
column.

(*) Partial persistence is ensured by serialising mutating functions only.

recorded in the cap of a deque. Nodes in the Immutable Data Structure record
information about the operation that created them. Read and write operations

on the right node, r, can be labelled R[r] and W]r| respectively.

Figure 5.3 illustrates the abstract read and write operations on variables

recorded in the cap of a map.

The cap can enforce serialisability at any level of granularity including making
all functions accessing the data structure linearizable. A vector can be made

linearizable by serialisable access to a single variable c.

Table 5.1 describes how the cap determines the granularity at which concur-

rency control is enforced.

The Canonical Binary Tree hides structural information from the application
making the topology of the tree independent of the functions acting on it. The
topology of a Canonical Binary Tree is not invariant because the tree may be bal-
anced at any time. During balancing the topology of the tree is modified causing
new nodes to be created. These new nodes must maintain information about
the abstract read and write operations on the variables they represent. After a
balancing rotation, information about abstract read and write operations is in
the same positions relative to the root. The skew and split balancing rotations
cause the annotation of a node to change resulting in an abstract write operation

to the corresponding variable.

5.2. SERIALISABILITY 167

Exaafes

._‘
N

w
ol
wm

o

*

Figure 5.3: Operations on variables in the cap of a map. The cap contains
the variables 1Llr,1.c,rl.r and rr.

(a) The path created by the function Insert(6 — F') which creates version V1 is
shaded. The operations {W{rr], R[r], R|c]} are recorded in the vertices corre-
sponding to the cap. The annotation of the variable rr does not change, but it
is recorded as a write because there is a change in the subtree that it suspends.
(b) The Query(4) operation creates a new version V2 of the data structure to
record the operations {R[r]], R[r], R[c]} in the vertices corresponding to the cap.

168 CHAPTER 5. CONCURRENCY CONTROL

5.2.8 Validation

The concurrency control protocol is enforced by the validate function that takes
as its arguments two versions of the Immutable Data Structure. It considers the
operations on variables in the caps of both versions. Operations conflict if they
act on the same variables and one of them is a write. Conflicting operations may
or may not conform to the concurrency control protocol. The validate function
determines whether the versions contain conflicting operations that violate the
protocol.

Figure 5.4 illustrates conflicting and non-conflicting operations on a deque.

A value representing the topology of the cap is passed as a parameter to the
validate function. The validate function traverses the nodes in the cap of both
versions and compares the operations acting on nodes corresponding to the same
variable. When conflicting operations are detected the time stamp meta-data
is considered. The function returns a binary value which indicates whether or
not the two versions contain conflicting operations that are not permitted by the

protocol.

5.2.9 Meta-data

The two versions of the Immutable Data Structure considered by the validate
function do not necessarily represent the application of single functions to a com-
mon ancestor version. If they did then conflict resolution would only be a matter
of detecting conflicting abstract read and write operations on the same variable.
Indeed, the paths considered by the validate function are of arbitrary complexity
as they may represent the action of multiple functions applied to a common an-
cestor version. To resolve conflicts the Time Stamp Ordering concurrency control
protocol is applied to the time stamp meta-data recorded in the nodes.

The Time Stamp Ordering protocol works by comparing the read and write
time stamps of conflicting operations to determine whether the operations appear
to occur in the order given by the time stamp of the functions. Details of the
protocol and a proof that the operations that it permits are always equivalent to
a serial execution can be found in Bernstein [BHGS87].

The Time Stamp Ordering concurrency control protocol requires that a seri-
alisable system maintains a unique monotonically increasing time stamp source

and that a time stamp should be associated with all operations on variables. For

5.2. SERIALISABILITY 169

(b)

Figure 5.4: Conflicting and non-conflicting operations on a deque. The
cap contains three variables 1, r and c.

(a) Conflicting operations. The path created by the function Push_front()
records the operations {W/{l], R[c|} in the nodes corresponding to the cap. The
function creates a new version V1 by path copying from version V0. The path
created by the function Front() records the operations {R[l], R[c]}. The func-
tion creates a new version V2 by path copying from version V0. The functions
conflict because they both act on variable 1 and one of them is a write.

(b) Non-conflicting operations. The path created by the function Push_front()
records the operations {W/{l], R[c|} in the nodes corresponding to the cap. The
function creates a new version V3 by path copying from version V0. The path
created by the function Back() records the operations {R[r], R[c|}. The function
creates a new version V4 by path copying from version VO0.

170 CHAPTER 5. CONCURRENCY CONTROL

the purposes of concurrency control the serialisable system can be considered as
a single Immutable Data Structure so a time stamp source is maintained inde-
pendently by each data structure. A time stamp source can be implemented by
an ordinal number using an atomic increment instruction.

A unique time stamp is associated with each function call. Each node retains
the time stamp associated with the function that wrote the variable to which it
corresponds. Each node also retains the highest time stamp of any function that
reads the variable to which it corresponds.

The time stamps must be maintained in the correct positions relative to the
root and this requirement dictates the implementation of the functions of the
Canonical Binary Tree. Without this requirement the implementation of path
copy is somewhat arbitrary. For example, an element can be inserted into a tree
by creating a new root node whose children are the past version of the tree and
a leaf containing the element. The insert() operation cannot be implemented
in this way because it will alter the relative position of existing nodes. Instead,
the path to an existing leaf must be copied when an element is inserted into
the Canonical Binary Tree. The time stamps associated with each node on the
path are copied to the new node corresponding to the variable it represents. For
example, the second element in a Canonical Binary Tree must be inserted by a
leaf to root path copy operation which creates two new nodes to maintain the
relative position of time stamps.

Maintaining time stamps in the correct relative positions during balancing
is straightforward. The relative position of a node in the subtree suspended
by a pivotal node is altered by a balancing rotation. Both the skew and split
balancing rotations can be regarded as writing to the variable corresponding to
the pivotal node. It is not necessary to consider the time stamps of a node in
the subtree suspended by the pivot because this write operation will conflict with

any operation affecting a variable in this subtree.

5.3. CONFLUENCE 171

5.3 Confluence

Functions acting simultaneously on an Immutable Data Structure each create
different versions of the structure. These versions may be combined, provided
they are not the result of conflicting functions, to create a new version which is
equivalent to a serial execution of the functions. A function that combines past
versions of a data structure is called a meld function. The existence of a meld
function endows an Immutable Data Structure with the property of confluent
persistence.

The validate function can ensure that two functions acting on an Immutable
Data Structure do not contain conflicting operations and that combining the two
versions produced in isolation will result in a single version which is equivalent to
a serial execution of the functions. The problem is how to combine these versions
into a single version?

The main contribution of this section is the description of a meld function that
combines versions of an Immutable Data Structure produced in isolation. This
section focuses on techniques for making Immutable Data Structures confluently

persistent.

5.3.1 Simultaneous modifications

To make the functions of our Immutable Data Structure confluently persistent
we need a meld function that can combine two non-conflicting versions of the
Immutable Data Structure.

For example, consider two functions acting simultaneously on a deque. One
function inserts an element onto the back of the queue and a second function,
executing on another processor, simultaneously removes an element from the front
of the queue. The functions do not conflict but they do result in two different
versions of the queue which must be melded to produce a new version of the queue

which is equivalent to a version produced by a serial execution of the functions.

5.3.2 Meld Function

The meld function takes two versions of the Canonical Binary Tree and creates a
new version by full copying the nodes corresponding to variables in the cap. When

used in conjunction with a validate function that rejects conflicting operations

172 CHAPTER 5. CONCURRENCY CONTROL

Figure 5.5: Making a deque confluently persistent by using a meld function
that combines versions created in isolation. The cap of a deque contains three
variables 1, r and c.

(a) The function Push_front(q) acts on version VO which contains values
{r,s,t,u,v,w}. Tt creates version V1 which contains the values {q,r, s,t,u, v, w}.
The operations {R][c], W[l]} are recorded in the path.

(b) The function Pop_back() acts on version V0 to create version V2 which con-
tains {r, s,t,u,v}. The operations {R[c], W][r|} are recorded in the path.

(c) Versions V1 and V2 meld to produce a new version V3 which contains
{q,7,s,t,u,v}. The meld selectively copies the nodes from versions V1 and V2.

(d) A serial execution of these functions would have created version V4 which
contains {q,,s,t,u,v} and is equivalent to V3.

5.3. CONFLUENCE 173

the meld function makes an Immutable Data Structure confluently persistent.

The meld function takes references to versions of arbitrary complexity as
its parameters and returns a reference to a new version. It is specialised by
a parameter representing the topology of the cap. The meld function traverses
the nodes in the cap of both versions and compares the operations acting on nodes
corresponding to the same variable. The meld function is a full copy operation
that selectively copies nodes from the two versions using the operations and time
stamps recorded in the nodes to determine which version to copy. For each
variable in the cap a new node is created to represent it. The function returns a
reference to a root node which represents a new version.

Figure 5.5 illustrates an example of how a deque can be made confluently
persistent by a meld function that combines two versions simultaneously created
in isolation.

The two versions in this example could have been combined by creating a
new root node. However, in the general case it is necessary to copy all of the
nodes which correspond to variables in the cap to ensure that the correct time
stamps are recorded in the nodes and that the relationship between operations
and variables is maintained.

The two versions in this example could have been combined without using time
stamps because each version represents the action of a single function. However,
in the general case it is necessary to consider the time stamps associated with
each node while performing the full copy.

The deque is a particularly simple example, however all ADT's implemented by
the Canonical Binary Tree can be made confluently persistent using the technique.
The meld function is implemented by the Canonical Binary Tree, the topology
of the cap is supplied as a parameter but the operation of the meld function is
ADT agnostic.

5.3.3 Previous work

Driscoll defines confluence in a seminal paper on persistent data structures [DSST86].
Versions of an Immutable Data Structure created by arbitrary transforma-
tions cannot always be combined because the functions that created them may
conflict. Fiat considers that the problem of making a data structure confluently
persistent is intractable in the general case [FK03]. When conflicting functions

are eliminated the problem of implementing a meld function becomes tractable,

174 CHAPTER 5. CONCURRENCY CONTROL

but even functions that do not conflict can transform the topology of a data
structure in ways that are difficult to reconcile.

Version control systems for documents are well known applications of confluent
persistence. Pilato describes a system called Subversion which enables multiple
authors to modify a document concurrently [PCSF08]. Subversion provides a
validate function that highlights any conflicting modifications to a document and

a meld operation which combines multiple versions

Chapter 6
Contention Management

Concurrent programs that make strong progress guarantees are scalable but
those that require centralised transaction management to ensure progress are
not. Transactional Memory systems centralise the responsibility for scheduling
and contention management, at the expense of scalability. This chapter explains
why scalable concurrent programs should make strong progress guarantees. It
also explains how a load-balancing scheduler, intended for use with a parallel
workload, can be used to schedule Memory Transactions.

Section 6.1 identifies the choice of contention management mechanism as one
of the most significant decisions taken when designing a concurrent system.

Section 6.2 describes how Immutable Data Structures can be used to imple-
ment non-blocking algorithms.

Section 6.3 compares a non-blocking Producer Consumer Queue with its
blocking counterpart.

Section 6.4 describes how Memory Transactions can be load-balanced by a

scheduler intended for a parallel workload.

175

176 CHAPTER 6. CONTENTION MANAGEMENT

6.1 Progress and Contention Management

Concurrent applications suffer from the progress pathologies of blocking, live-lock
and priority inversion. Progress pathologies can be alleviated by a contention
manager. However, centralised contention management restricts the scalability
of a concurrent system. This thesis proposes that a concurrent application should

make strong progress guarantees to alleviate the need for contention management.

A concurrent application that guarantees that all of its constituent tasks com-
plete in a finite period of time offers a progress guarantee, whereas an application
that does not can suffer from a progress pathology. A useful concurrent appli-
cation should make a strong guarantee of progress but it is difficult to write

concurrent applications that guarantee progress.

The main contribution of this section is the observation that concurrent ap-
plications that make strong progress guarantees alleviate the need for contention
management. This section focuses on guaranteeing that functions acting on an

Immutable Data Structure eventually complete.

6.1.1 Blocking

A program that executes on a Transactional Memory system either blocks or
guarantees obstruction-free progress. Obstruction-freedom is the guarantee that if
a transaction is repeatedly re-tried and eventually encounters no interference from
other transactions, it will complete. Obstruction-freedom does not guarantee that
all of the transactions that constitute a concurrent program eventually complete.
Programs that execute on a Transactional Memory system offer weak progress

guarantees and are therefore prone to progress pathologies.
Section 6.1.3 discusses progress guarantees and progress pathologies.

Transactional Memory systems can implement a contention manager to alle-
viate progress pathologies and ensure the progress of the transactions executing
in the concurrent system. The contention manager has an overview of the con-
current processing and can intervene to ensure that the application eventually
completes. However, contention management is a necessarily centralised task so

it restricts the scalability of the concurrent system.

6.1. PROGRESS AND CONTENTION MANAGEMENT 177

6.1.2 Guaranteed Progress

An application should guarantee lock-free progress to alleviate the need for a
concurrent system to implement contention management. Centralised contention
management is a fundamental barrier to the scalability of a concurrent system,
whereas the difficulty of creating applications that guarantee progress is a problem
that can be overcome. This thesis focuses on making it easier to write concurrent
applications that guarantee progress.

Rajwar describes how concurrent applications based on the Time Stamp Or-
dering concurrency control protocol can be made lock-free [Raj02]. A lock-free
concurrent application guarantees system-wide progress but permits individual
operations to postpone indefinitely. A lock-free application is prone to the pathol-
ogy of live-lock and priority inversion. However, it will be argued that the use
of Time Stamp Ordering as the concurrency control protocol reduces the likeli-
hood of either pathology occurring so a concurrent application that guarantees
lock-free progress does not require contention management.

Live-lock can occur in a transactional system that uses Time Stamp Order-
ing. In practice, continual live-lock is unlikely because the unique monotonically
increasing time stamp assigned to each transaction acts as a priority causing a
single transaction to succeed eventually in any conflict between transactions.

Priority inversion can occur in lock-free applications that implement the Time
Stamp Ordering concurrency control protocol. In practice, priority inversion can
be addressed by ensuring that all transactions execute for similar durations. Long
running transactions do not occur when transactions are implemented at the
granularity of accesses to a data structure.

Bernstein explains in detail why database systems that implement Time Stamp

Ordering do not require contention management [BHGS87].

6.1.3 The Dining Philosophers

The dining philosophers problem can be used as an illustration of progress guaran-
tees and progress pathologies. Five philosophers are sitting round a table dining
on bowls of rice. Five chopsticks are placed between the bowls. Each philosopher
sits in front of a bowl and can only reach the chopstick to his immediate left or
right. A philosopher must have a pair of chopsticks in order to eat. The action

of the philosophers is determined by a dining algorithm.

178 CHAPTER 6. CONTENTION MANAGEMENT

O
Sige
O]

Figure 6.1: The dining philosophers each have a rice bowl but there are
insufficient chopsticks for them to all eat at once.

Figure 6.1 illustrates the arrangement of bowls and chopsticks.

Hoare reformulated a five computer synchronisation problem, originally posed
by Dijkstra, as the dining philosophers problem [Hoa83|. Krishnaprasad describes
how a number of synchronisation strategies can be expressed in terms of dining
algorithms [Kri03].

The following discussion considers progress guarantees made by dining algo-
rithms and the progress pathologies they are prone to.

Deadlock is a circular wait condition that occurs when each of the philosophers
reaches for a second chopstick but finds that their neighbour has already taken
it. The philosophers involved in the deadlock will starve because eating requires
a pair of chopsticks.

Mutual exclusion is a convention that relies on blocking the progress of con-
current processes to prevent simultaneous execution. Deadlock can be prevented
in a system in which mutual exclusion is enforced by serialising access to a single
entity. To prevent deadlock a dining algorithm introduces a single napkin with
the rule that only the philosopher in possession of the napkin can eat. The lack of
a napkin blocks the other philosophers from eating. The napkin is placed on the
table and all the philosophers try to possess it but only one is successful. When
the successful philosopher has finished eating he places the napkin back on the
table. A single philosopher can dominate the napkin causing the others to starve.

A non-blocking algorithm ensures that operations competing for a shared
resource never have their progress indefinitely postponed by mutual exclusion. A
non-blocking algorithm guarantees that a philosopher will not starve as a result

of mutual exclusion.

6.1. PROGRESS AND CONTENTION MANAGEMENT 179

A non-blocking algorithm is obstruction-free if it guarantees that when an
action is tried repeatedly and eventually encounters no interference from other
actions it will complete successfully but it does not guarantee that such a situation
will occur. An obstruction-free dining algorithm guarantees that a philosopher

will be able to eat when the other philosophers are not attempting to eat.

Obstruction-free algorithms can suffer from the pathology of live-lock. Live-
lock occurs when two or more competing operations cause each other to restart,
preventing any of them making progress. A dining algorithm can live-lock when
each of the philosophers reaches for both chopsticks simultaneously but withdraws
when he observe his neighbour behaving likewise. All of the philosophers involved

in the live-lock will starve.

Obstruction-free algorithms can also suffer from the pathology of priority in-
version. Priority inversion occurs when a long running operation is preempted
by an operation of brief duration. A dining algorithm in which a philosopher
procrastinates when he has an opportunity to eat can suffer from priority in-
version. The procrastinating philosopher might starve because he is continually

interrupted by requests from other philosophers which prevent him from eating.

A non-blocking algorithm is lock-free if it guarantees that at least one action
eventually completes. A dining algorithm is lock-free if it guarantees that at
least one of the philosophers eventually eats. Lock-free algorithms can suffer
from live-lock and priority inversion but these pathologies do not prevent all
operations from making progress. In practice, live-lock and priority inversion are
less likely to occur in an algorithm that guarantees lock-freedom than one that

only guarantees obstruction-freedom.

A non-blocking algorithm is wait-free if it guarantees that eventually every
action completes. A wait-free dining algorithm guarantees that all of the philoso-
phers eventually get to eat. Wait-free algorithms are not prone to the pathologies
of live-lock and priority inversion. All concurrent algorithms can be converted
into implementations that are wait-free but the overheads of the conversion are
prohibitive [Her88] [FHS04].

At a philosophy conference philosophers have a choice of tables at which dif-
ferent dining algorithms are used. The wait-free table is the best because all of
the philosophers are guaranteed to eat eventually and the blocking table is the
worst because all the philosophers may starve because of deadlock. A lock-free

table is preferable to an obstruction-free table because at the lock-free table at

180 CHAPTER 6. CONTENTION MANAGEMENT

least one philosopher does not starve. Wait-freedom is the strongest progress

guarantee and the other guarantees are progressively weaker.

6.1.4 Previous work

Applications executing on Transactional Memory systems suffer from the progress
pathologies of live-lock and dead-lock. In weakly isolated systems these patholo-
gies can occur in combination with the isolation pathology of cascading aborts.
Bobba categorises Transactional Memory pathologies and describes them in detail
[BMV*07].

Many Software Transactional Memory implementations block at some point
in their execution. Blocking Software Transactional Memory systems are easier to
design than non-blocking systems. A blocking Software Transactional Memory
hides blocking from the application programmer by implementing it internally
[DDS06] [HPSTO06] [SATH™06].

Several Software Transactional Memory systems guarantee obstruction-freedom
[HLMS03] [SCKPO07] [CRS05] [TMGT09]. These systems are based on the con-
cept of exclusive but revocable object ownership.

In an obstruction-free Software Transactional Memory system each transac-
tion is associated with a descriptor which indicates whether the transaction is
active, committed or aborted. Objects are owned by transactions and have an
associated pointer to their owner which is modified by an atomic instruction.
When a transaction reads an object it checks the pointer to determine whether
another transaction already owns it.

A transaction takes ownership of an object by modifying the pointer so that it
references the transaction’s descriptor. Once a transaction has taken ownership
of all the objects it will access it can commit its changes to those objects. This is
done by changing the transaction descriptor from live to committed. This action
will atomically commit the changes to all affected objects.

An obstruction-free Software Transactional Memory system can suffer from
progress pathologies. Concurrent transactions can prevent each other from own-
ing all of the objects they require, causing live-lock. Short running transactions
can prevent long running transactions from obtaining all the objects they require,
causing priority inversion.

Exclusive object ownership is a two-phase locking protocol which requires that

all the locks that will ever be required by a transaction are acquired before any are

6.1. PROGRESS AND CONTENTION MANAGEMENT 181

released. Bernstein describes the two-phase locking concurrency control protocol
in detail [BHG87]. Guerraoui explains that exclusive object ownership cannot
provide the stronger guarantee of lock-freedom because systems based on two-
phase locking cannot guarantee that at least one transaction will ever complete
its operation, while other transactions are active [GKO8].

Ennals argues that obstruction-free Software Transactional Memory systems
are less scalable than their blocking counterparts [Enn06]. However, we believe
that the best approach to overcoming scalability restrictions is to strengthen the
progress guarantee, because a concurrent application that does not guarantee

that all of its tasks eventually complete can hardly be described as scalable.

182 CHAPTER 6. CONTENTION MANAGEMENT

6.2 Non-blocking Algorithms

The construction of non-blocking algorithms is a challenging programming task.
Non-blocking algorithms are scalable because they permit simultaneous access
to a data structure and they offer strong progress guarantees without requiring
centralised contention management. This section describes a simple technique
for constructing non-blocking algorithms. Non-blocking functions acting on Im-
mutable Data Structures are the foundation on which scalable concurrent pro-
grams can be built.

Non-blocking algorithms are scalable and relieve the programmer from having
to reason about locks. A concurrent system in which semantically linearizable
functions act concurrently on an Immutable Data Structure can guarantee lock-
free progress. In order to simplify the construction of non-blocking algorithms
concurrent systems should also ensure that serialisable functions guarantee lock-
free progress.

The main contribution of this section is a general technique for implementing
non-blocking algorithms. This section focuses on allowing simultaneous access to

Immutable Data Structures.

6.2.1 Ensuring serialisability without blocking

The enforcement of serialisability is more involved than the enforcement of lin-
earizability because conflict detection is performed by a function instead of an
atomic hardware instruction.

Semantic linearizability is enforced by recording the value of the root of the
Immutable Data Structure at the start of the execution of an access function and
checking that its value has not changed before atomically replacing the root at
the end of the execution. This replacement relies on an atomic compare-and-
swap instruction which serialises access to the root and implements a memory
barrier that ensures that the speculative path is atomically transformed into a
new shared version of the data structure.

Semantic linearizability is lock-free because it guarantees that when the pro-
gram runs for sufficiently long at least one function makes progress. An access
function can be prevented from completing only if the value of the root changes
whilst it is executing. However, if the value of the root changed then another

function successfully completed so at least one function made progress.

6.2. NON-BLOCKING ALGORITHMS 183

Semantic linearizability does not achieve the stronger condition of wait-freedom.
An algorithm is wait-free if every operation eventually completes. An access func-
tion can be prevented from completing if the value of the root changed whilst it
was executing. The function can be re-tried indefinitely but there is no guarantee
that it will eventually succeed.

The serialisability of simultaneous accesses to an Immutable Data Structure
is enforced by a validate function that implements the Time Stamp Ordering
concurrency control protocol and a meld function that can combine two version
of the data structure making it confluently persistent. The validate and meld
functions do not take place instantaneously so the access function checks that
no conflicting accesses occurred while they were executing. It also checks that
no accesses complete successfully while the validation and meld functions are
executing. The problem is to combine these actions in a way that guarantees

progress.

6.2.2 Lock-free serialisability

An access function of an Immutable Data Structure includes both validate and
meld functions which implement a simple distributed transaction manager. This
transaction manager combines two forms of speculation. The first speculation
is that the access function does not conflict with any functions accessing the
data structure simultaneously. The second speculation is that the root of the
Immutable Data Structure does not change while the validate and meld functions
take place.

Figure 6.2 illustrates the execution of an access function in the presence of
concurrent mutations.

An Immutable Data Structure access function records the value of the root of
the Immutable Data Structure at the moment in time that it starts. This refer-
ence represents the starting version of the data structure. The function is applied
to this starting version to produce a path in isolation. The function records the
value of the root of the Immutable Data Structure at the moment in time that it
completes the path, we call this version the first snapshot. This reference repre-
sents a version of the data structure which might have been arbitrarily mutated
by concurrently executing functions. The validation function ensures that the
execution of the function and the first mutation do not contain conflicting op-

erations. The meld function combines the path with the first snapshot version

184 CHAPTER 6. CONTENTION MANAGEMENT

First Second
Mutation Mutation

Function Function

Access
Function

Validate
Meld

Validate

Function Meld

\6
\6

Validate Replace Replace
Meld CAS CAS

First
snapshot

Second
snapshot

\I

Replace 4
CAS

Figure 6.2: The execution of an access function in the presence of con-
current mutations. Each operation takes a version of the data structure, repre-
sented by an ellipse, as its argument and produces a new version. The operations
executed by another processor are shaded.

The first mutation may successfully complete, while the access function is exe-
cuting, creating the first snapshot version. If so, the path created by the access
function is validated against this snapshot version and melded with it to create a
putative path. A second mutation may complete, while this validation is taking
place, creating the second snapshot version.

6.2. NON-BLOCKING ALGORITHMS 185

to produce a putative version of the data structure. Both the validate and meld
functions execute in isolation, their only inputs are the path and the first snap-
shot version. An atomic compare-and-swap instruction replaces the root with the
putative version if and only if the root has the same value as the first snapshot.

An Immutable Data Structure access function completes successfully if and
only if both speculations are successful. The first speculation is that the access
function does not conflict with the first mutation. The second speculation is that
the second mutation does not complete successfully in the period between the
first and second snapshot. In the first case a conflict is detected after the first
mutation successfully modified the root which implies that the first mutation
made progress. In the second case the value of the root only changes after the
second mutation successfully modified it which implies that the second mutation
made progress. Either the function or one of the mutations makes progress in
each case. The execution is lock-free because it guarantees that when a program

runs for sufficiently long at least one processor makes progress.

6.2.3 Previous work

Herlihy describes the state of research into non-blocking algorithms in a book
entitled ‘The art of multiprocessor programming’ [HS08].

Non-blocking algorithms which access mutable values are complex, difficult
to reason about and are usually regarded as the domain of expert programmers.
Given an ADT there is no general technique for constructing a non-blocking
algorithm that conforms to it.

A particularly difficult problem, the ABA problem, contributes significant
complexity to the implementation of non-blocking algorithms. Fraser describes
the ABA problem which is a pathology of the atomic compare-and-swap instruc-
tion which occurs when addresses are re-used [FHO7]. The implementation of a
non-blocking algorithm is simplified by ensuring that all the data it acts upon is
immutable and that addresses are not re-used. The immutability of the vertices
of an Immutable Data Structure ensures that the root cannot be assigned the
same value more than once so the ABA problem cannot occur.

An atomic compare-and-swap instruction cannot modify two non-contiguous
locations so non-blocking data structures with cycles, such as doubly linked lists,
are difficult to construct. The ADTs presented by non-blocking algorithms are

often similar to those presented by purely functional data structures which are

186 CHAPTER 6. CONTENTION MANAGEMENT

Figure 6.3: The abstract syntax tree of an expression in which each value
is associated with a tag number. The expression is f(f(q,r), f(f(s,1), f(u,v))).

also single pointer structures.

Goetz examines the performance of the non-blocking algorithms included in
java.util.concurrent library [GBBT06].

Allemany found that many non-blocking algorithms perform badly on Chip
Multi-Processors [AF92]. This poor performance can be attributed to the use of
the atomic compare-and-swap instruction which may take thousands of clock cy-
cles to complete. Hennessy provides an introduction to the complex performance
issues surrounding the use of the atomic compare-and-swap instruction [HPO0G].
Non-blocking routines which use the atomic compare-and-swap instruction spar-

ingly can perform very well.

6.2.4 Non-blocking evaluation

Non-blocking algorithms based on immutable data are more flexible than those
based on mutable data. The following example illustrates how a non-blocking
algorithm can be used to load-balance the evaluation of an arbitrary expression
on multiple processors. This problem is introduced in section 2.2.7.

The expression f(f(q,7), f(f(s,t), f(u,v))) can be described by an abstract
syntax tree. The problem is to load balance the evaluation of the expression
between processors. It is difficult to scheduler the concurrent execution of this
expression because the execution time of each function is not known. A solution
is to dynamically schedule the execution of functions as their arguments become

available.

6.2. NON-BLOCKING ALGORITHMS 187

Figure 6.3 illustrates the abstract syntax tree of the expression.

The evaluation may be dynamically load-balanced by recording intermediate
values in an Immutable Data Structure. Initially, the data structure contains only
the arguments of the expression. The final version contains all of the arguments
and intermediate values as well as the result. The data structure maintains an
immutable record of the evaluation of the expression.

Figure 6.4 illustrates the initial and final versions of an Immutable Data Struc-
ture which represents the evaluation of the expression.

Figure 6.5 illustrates the non-blocking evaluation of the expression by multiple
pProcessors.

In the illustration, each function’s arguments are available in the version of
the Immutable Data Structure that it starts with. If the function is unable to
find its arguments in the Immutable Data Structure then it is re-started with a
new version. Eventually, all of the functions in the expression complete and the

value of the expression can be obtained from the Immutable Data Structure.

188 CHAPTER 6. CONTENTION MANAGEMENT

1
2 2
~— f(a.r)

[
v
~

u

f(f(s,t),f(u,v))

9 8 11 *
f(u,v) v f(f(q,r),f(f(s,t),f(u,v)))

Figure 6.4: An Immutable Data Structure representing the evaluation
of an expression. The Immutable Data Structure representing the evaluation
of the expression f(f(q,7), f(f(s,t), f(u,v))) is an interval tree, with a sentinel,
which maps the tag number of a value in the abstract syntax tree to a leaf. The
Immutable Data Structure contains all of the arguments and intermediate values
as well as the result. Only the initial and final versions of the Immutable Data
Structure are shown. The final version is shaded.

6.2. NON-BLOCKING ALGORITHMS 189

| 4
9 : f(u,v)

'/

Validate
Meld

I

@ | 6 fo0

Validate
Meld

3:f(q.r) ‘@

Validate
Meld

| 10 : f(f(s,8),f(u,v))

.

Validate
Meld

A A
|11 ¢ f((q).f(s,0).F(u,v) |

./

Validate
Meld

Figure 6.5: The non-blocking evaluation of the expression
f(f(q,m), f(f(s,t), f(u,v))) by multiple processors load-balances the work
between them. Each operation takes a version of the data structure, represented
by an ellipse, as its argument and produces a new version. The operations
executed by another processor are shaded. Only validation against the first
snapshot version is show.

190 CHAPTER 6. CONTENTION MANAGEMENT

6.3 Producer Consumer Queue

To evaluate our technique for creating a non-blocking algorithm we compare the
ease of use of a bounded non-blocking Producer Consumer Queue with that of
a similar queue described in the literature. We also compare the performance of
our queue with that of its counterpart implemented using mutual exclusion. We
find that our queue is more flexible than the non-blocking queues described in the
literature. We also find that our queue performs similarly to a queue implemented
using mutual exclusion.

The Producer Consumer Queue is a concurrent design pattern. A bounded
Producer Consumer Queue can act as a message queue for Inter-Processor Com-
munication. Two classes of processors, the producers and the consumers, share
a common buffer which acts as a queue of messages between them. A producer
adds a message to the queue and a consumer removes it. The Producer Consumer
Queue guarantees that a producer cannot add a message onto the queue when it
is full and that a consumer cannot remove a message when it is empty and that
each message is consumed exactly once.

The main contribution of this section is an evaluation of a Producer Con-
sumer Queue implemented by an Immutable Data Structure. This section focuses
on comparing: throughput, ease of implementation, ease of use, scalability and

progress guarantees.

6.3.1 Experiment

Our experiment compares the performance of a lock-free bounded Producer Con-
sumer Queue implemented by an Immutable Data Structure with that of a block-
ing bounded Producer Consumer Queue implemented using mutual exclusion.

Section 6.3.3 describes the implementation of the Producer Consumer Queues
and the experimental set up.

We call a Producer Consumer Queue that transmits messages in a buffer a
Mailbox Queue and a queue that transmits references to messages a Messaging
Queue. We are primarily interested in transmitting messages between physical
processors so each end of the queue is accessed by thread of execution on a
different physical processor.

Figure 6.6 illustrates the Producer Consumer Queue design pattern.

The production and consumption of messages by an application effects the

6.3. PRODUCER CONSUMER QUEUE 191

Producer

ﬁ

Producer

Producer msg | msg | msg | msg | msg | msg item l \tem |tem item l ltem |tem

(a) Mailbox Queue (b) Messaging Queue

(

9

Figure 6.6: The Producer Consumer Queue design pattern.

(a) A Mailbox Queue acts as a buffer for fixed sized messages sent between pro-
ducers and consumers.

(b) A Messaging Queue transmits messages referenced by items in the buffer
between producers and consumers.

performance of the queue by introducing latency. Our experiment examines how
the throughput of the Messaging Queue varies depending upon this latency.
Section 6.3.4 describes a simulated message workload.
We examine whether our lock-free Producer Consumer Queue is easier to
implement than a similar non-blocking queue. We also compare the ease of use,
the scalability and the progress guarantees offered by our queue with those of

other blocking and non-blocking queues.

6.3.2 Results

This thesis does not make any claims about the absolute performance of Trans-
actional Data Structures. However, the results of our experiment show that the
performance of the non-blocking Producer Consumer Queue was broadly similar

to that of a queue implemented using mutual exclusion.

Maximum throughput of the Mailbox Queue

The maximum throughput of a Mailbox Queue implemented by the non-blocking
Producer Consumer Queue is compared with that of blocking queues from the
Boost C++ library [Kar05].

Table 6.1 lists the elapsed time taken to transmit messages between two pro-
cessors for various queue types.

Our non-blocking Producer Consumer Queue has the lowest overall execution

time. The implementation based on a deque from the standard library has the

192 CHAPTER 6. CONTENTION MANAGEMENT

Algorithm Elapsed time (s)
Non-blocking Producer Consumer Queue 0.24
boost bounded circular buffer 0.28
boost bounded space optimised circular buffer 0.30
boost bounded std::deque container 0.25
boost bounded std::list container 0.85

Table 6.1: The maximum throughput of a Mailbox Queue. The elapsed
time taken to transmit one million mailbox messages between two processors for
various queue types is listed. The experiment determines the maximum through-
put of a Mailbox Queue with a capacity of one thousand 8 byte messages. Figures
given are the mean of 10 observations.

lowest elapsed execution time of the blocking implementations.
Section 6.3.6 discusses the performance of the Mailbox Queue in detail.

We conclude that the maximum throughput of our mailbox Producer Con-

sumer Queue is similar to that of its blocking counterpart.

Maximum throughput of the Messaging Queue

The maximum throughput of a Messaging Queue implemented by the non-blocking
Producer Consumer Queue is compared with that of a blocking queue from the
Boost C++ library.

Figure 6.7 and figure 6.8 illustrate the elapsed time taken to transmit messages

between processors while varying the latency of production and consumption.

The blocking queue has a lower elapsed time than the non-blocking queue,
regardless of the latency incurred by either the producer or the consumer. The
difference between the throughput of the queues becomes more pronounced as
the latency increases. When there is an imbalance between the latency of the
producer and that of the consumer the elapsed time taken by the non-blocking

queue is significantly longer than that taken by the blocking queue.
Section 6.3.7 discusses the performance of the Messaging Queue in detail.

We conclude that the maximum throughput of our messaging Producer Con-

sumer Queue is lower than that of its blocking counterpart.

6.3. PRODUCER CONSUMER QUEUE 193

Elapsed time (seconds)

0 1 1 1
0 5 10 15 20

Mean cache misses per message

Figure 6.7: The maximum throughput of a non-blocking bounded Mes-
saging Queue implemented by a confluently persistent Immutable Data
Structure. The elapsed time taken to transmit one million messages between
two processors is plotted against a varying number of forced cache misses in-
curred while: producing (*), consuming (x) and both producing and consuming
the messages (4). Figures given are the mean of 10 observations.

194 CHAPTER 6. CONTENTION MANAGEMENT

Elapsed time (seconds)

Mean cache misses per message

Figure 6.8: The maximum throughput of a blocking Producer Con-
sumer Queue from the Boost library, implemented by the std::deque
container. The elapsed time taken to transmit one million messages between
two processors is plotted against a varying number of forced cache misses in-
curred while: producing (*), consuming (x) and both producing and consuming
the messages (+). Figures given are the mean of 10 observations.

6.3. PRODUCER CONSUMER QUEUE 195

Ease of implementation

The Canonical Binary Tree on which our Producer Consumer Queue is based is
a general solution to problems in concurrency, whereas a non-blocking algorithm
is typically a specialised solution to a particular problem.

Section 6.3.8 compares the ease of implementing our queue with that of other
queues.

We conclude that our Producer Consumer Queue implementation is more

flexible than either its blocking or non-blocking counterparts.

Ease of use

This thesis claims that Transactional Data Structures make concurrent programs
easier to write.

From the prospective of an application programmer our Producer Consumer
Queue is as easy to use as either a blocking queue or the non-blocking Producer
Consumer Queue developed by Scherer [SLS09].

Section 6.3.9 compares the ease of use of our queue with that of other queues.

We conclude that our Producer Consumer QQueue implementation is as easy

to use as either its blocking or non-blocking counterparts.

Scalability

This thesis claims that Transactional Data Structures facilitate the development
of scalable concurrent programs.

We found that the throughput of both our queue and a queue implemented
using mutual exclusion were unaffected by the number of processors concurrently
accessing them.

Section 6.3.10 compares the scalability of our queue with that of other queues.

We conclude that our Producer Consumer Queue implementation is as scalable

as either its blocking or non-blocking counterparts.

Progress guarantees

This thesis claims that concurrent programs that use Transactional Data Struc-

tures can guarantee progress.

196 CHAPTER 6. CONTENTION MANAGEMENT

A Producer Consumer Queue implemented by mutual exclusion makes no
progress guarantees, whereas our non-blocking Producer Consumer Queue guar-

antees lock-free progress.

Section 6.3.11 compares the progress guarantees offered by our queue with

those offered by other queues.

We conclude that our Producer Consumer Queue implementation is preferable

to its blocking counterpart because it offers a progress guarantee.

6.3.3 Method

Experiments are performed using a PC with an Intel Core i7 860 processor oper-
ating at 2.8GHz with 8 MB of cache and 4GB of DDR3 SDRAM running at 1333
MHz. The examples are compiled using the Intel 64 bit C++ compiler with the

maximum optimisation level.

We use the bounded blocking Producer Consumer Queue coding example from
the Boost C++ library [Kar05]. Calls to the Boost Thread library are replaced
by corresponding calls to the Threading Building Blocks library and the scalable

memory allocator from this library is also used.

We use a bounded non-blocking Producer Consumer Queue based on a deque
implemented by the Canonical Binary Tree. The Canonical Binary Tree is bal-

anced but none of the optimisations, suggested in section 3.6.5 are implemented.

The memory occupied by the nodes is pre-allocated by the Threading Building
Blocks scalable memory allocator. Nodes that become unreachable are period-
ically garbage collected without blocking the execution. The memory occupied
by the leaves is allocated from a circular buffer. These locations are re-used but
the Canonical Binary Tree ensures that they appear immutable. The queue is
bounded by the leaf allocator which ensures that the front and back of the queue

do not meet.

The queueing applications we compare behave differently because the access
function of the blocking queue waits when the queue is empty, whereas the access
function of the non-blocking queue may fail and must be re-tried. However, both

applications transmit messages as fast as their queues allow.

6.3. PRODUCER CONSUMER QUEUE 197

6.3.4 Workload simulation

Inter-processor traffic is more difficult to characterise than network traffic. Stan-
dard protocols and benchmarks aid the evaluation of algorithms related to net-
work traffic, whereas Inter-Processor Communication is generally based on be-
spoke protocols. Concurrent applications use a mixture of message sizes and

perform varying amounts of work when preparing and processing messages.

The producer writes a message to memory and these writes are cached. The
atomic compare-and-swap instruction in both the blocking and non-blocking im-
plementations forces outstanding write operations buffered by the processor to
be written to memory, so when the consumer reads the message from memory
the operations are cache misses. The elapsed time taken to transmit messages is

dominated by the latency of these cache misses.

We simulate the work done during the production and consumption of mes-
sages by inducing cache misses, but it is not sufficient to assume that a fixed
number of cache misses is associated with each message. Messages are created
by applications which do a varying amount of work during the production and

consumption of messages and this behaviour must also be simulated.

We assume that the program issues memory operations that result in a cache
miss at random intervals and that the latency of these operations dominates
the production and consumption of the message. The number of cache misses
per message is modelled by a Poisson distribution. A Poisson distribution is a
discrete probability distribution that expresses the probability of a number of
independent events occurring in a fixed period of time. A cache miss can be

induced by accessing an array much larger than the processor cache.

6.3.5 Previous work

The C programming language does not specify a memory model so a concurrent
application written in C relies on the memory model implemented by the un-
derlying hardware architecture, but memory models implemented by hardware
architectures differ. Adve provides a comprehensive tutorial on shared mem-
ory consistency models [AG95]. Non-blocking structures implemented in C tend
not to be portable between different hardware architectures because the memory

models implemented by these architectures are different. For example, The Intel

198 CHAPTER 6. CONTENTION MANAGEMENT

architecture software developer’s manual describes how the memory models im-
plemented by Intel IA-32 and Intel 64 bit processors differ [Int07]. It is difficult
to construct a Non-blocking algorithm in C that is portable between the IA-32
and Intel 64 bit platforms.

Marginean describes a simple lock-free Producer Consumer Queue, imple-
mented in C, in the mainstream magazine Dr Dobb’s journal [Mar(08]. This queue
suffers from several problems including a misplaced memory barrier and false as-
sumptions about the effect of atomic instructions on the iterators implemented
by the Microsoft template library. The magazine published a revised version of
the download code the following month but this too contained errors. Shutter
described a working version of the queue, albeit with a restricted interface, four

months after publication of the initial article [Shu08].

Non-blocking algorithms described in the literature may appear simple but
getting them right is very difficult. Herlihy’s book 'The art of Multiprocessor
Programming’ unintentionally illustrates the difficulty of finding errors in non-
blocking algorithms. This book has an extensive on-line errata, even though
it was clearly written and reviewed by experts [HS08]. Erroneous non-blocking
algorithms, such as double-checked locking, have even appeared in peer reviewed

conference publications [BBBT06].

The Java programming language has a clearly defined memory model. Manson
describes the Java memory model in detail [MPAO5]. The Java virtual machine
for a particular hardware architecture implements memory barriers to ensure
the correctness of functions in the Java libraries. Lea describes how portable

concurrent programs can be constructed using the Java language [Lea06].

Scherer describes a lock-free unbounded Producer Consumer Queue which is
called a scalable synchronous queue [SLS09]. This queue outperformed the queue
included in the Java SE 5.0 version of the java.util.concurrent library and
was subsequently included in Java 6. This queue does not contain messages in
the way that our Messaging Queue does. Instead, it queues instances of the
producers and matches them to available consumers to allow the handover of a
single message. Scherer’s thesis lists the program code which implements the
queue and describes its operation in detail [Sch06]. The program code required
to implement this queue is much shorter than that of our Canonical Binary Tree

implementation but this belies its complexity.

6.3. PRODUCER CONSUMER QUEUE 199

6.3.6 Mailbox Queue performance

The throughput of a Mailbox Queue implemented by mutual exclusion is depen-
dent on the standard library data structure that implements it. The std::list
container is implemented by nodes with both forward and backward pointers,
whereas the std::deque is implemented in managed blocks of storage. The size
of an element in a std::list is larger than that of the std::deque. A single atomic
compare-and-swap instruction is performed by each operation and the amount of
memory written by the synchronisation depends upon the implementation of the
data structure. The memory written by the synchronisation results in coherency
cache misses when it is read by the consumer. The latency of cache misses dom-
inates the execution time so the throughput of Mailbox Queue is dependent on
the size of the elements of the underlying data structure.

Each message is written to memory by the producer and then read by the
consumer. We estimate that this operation takes 800 cycles to complete so with
a processor speed of 2.8GHz one million operations take about (1000000800 /2.8
10%) = 0.29 seconds to complete.

The throughput of both our Mailbox Queue and the blocking queue is similar
because they are both bounded by the latency of a similar number of coherency
cache misses per message. To verify this we increased the size of the node in our
Canonical Binary Tree and found that the throughput of the mailbox queue was
reduced.

We did not expect the node size to make such a large difference to the perfor-
mance of Transactional Data Structures. This observation motivated the search
for ways of optimising the performance of the Canonical Binary Tree by reducing
both the size of the node and the number of nodes accessed. These optimisations

are described in section 3.6.5.

6.3.7 Messaging Queue performance

The throughput of the Messaging Queue is, like the Mailbox Queue, bounded by
the latency of cache misses. However, some misses are a result of the simulated
processing of the messages.

When the production and consumption of messages is balanced the through-
put of the blocking and non-blocking Messaging Queues are broadly similar.

However, when the production and consumption of messages is imbalanced the

200 CHAPTER 6. CONTENTION MANAGEMENT

throughput of the blocking queue is higher than that of the non-blocking queue.
When rate of production of messages is higher than the rate of consumption
the instantaneous size of the queue is larger and consequently the path in the
Canonical Binary Tree is longer.

The number of coherency cache misses incurred by each message processed by
the non-blocking queue is dependent on the length of the path in the Canonical
Binary Tree, whereas the number of coherency cache misses incurred by the block-
ing queue is independent of the size of the queue. Consequently the throughput
of the non-blocking queue is dependent on the balance between the producer and

the consumer, but the throughput of the blocking queue is not.

6.3.8 Ease of implementation

Both the non-blocking Producer Consumer Queue of Scherer and our Canonical
Binary Tree took a similar amount of time to develop, so our non-blocking Pro-
ducer Consumer QQueue is no easier to implement from scratch than a comparable
non-blocking queue [SLS09]. However, it is difficult to modify the ADT presented
by the queue of Scherer without affecting its progress guarantee, whereas our
queue can easily be tailored to the requirements of a particular application.

For example, a work stealing scheduler may be used to load-balance work
among multiple consumers. A work stealing scheduler associates a unique Pro-
ducer Consumer Queue with each consumer and it permits an idle consumer to
remove messages from the back of a queue associated with a busy consumer to
balance the work between consumers. Our Producer Consumer Queue can easily
be adapted to permit equal access to both ends. It is more difficult to adapt the

queue of Scherer to permit equal access to both ends.

6.3.9 Ease of programming

From the prospective of an application programmer our Producer Consumer
Queue is as easy to use as either a blocking queue or the non-blocking Producer
Consumer Queue of Scherer. However, Scherer’s queue is more portable than
our queue because it relies on the clearly defined Java memory model, whereas
our queue is implemented in C which relies on the model implemented by the
hardware architecture.

Our Producer Consumer Queue is more portable than other non-blocking

6.3. PRODUCER CONSUMER QUEUE 201

queues implemented in C because it relies on a single atomic compare-and-swap
instruction for synchronisation, whereas other non-blocking queues rely on sepa-
rate memory barriers which are architecture dependent [Shu08|.

For example, a windowing queue allows more than one message to be added
or removed by a single operation. Our Producer Consumer Queue can easily be
adapted to support windowing by applying concurrency control to a path created
by more than one access function. However, windowing is difficult to implement
using mutual exclusion and we were unable to find an open source implementation
of a windowing queue to compare our implementation against.

Ease of programming is a vague concept but we found our Producer Consumer
Queue to be both portable and adaptable. It is at least as easy to use as either

its blocking or non-blocking counterparts.

6.3.10 Scalability

Non-blocking algorithms are preferable to blocking algorithms because they are
potentially scalable, whereas the scalability of algorithms that use mutual ex-
clusion is fundamentally limited by Amdahl’s law. Even a non-blocking algo-
rithm that performs poorly on a modern Chip Multi-Processor is preferable to its
blocking counterpart because the non-blocking algorithm is potentially scalable,
whereas a blocking algorithm has limited scalability on any future hardware.
Goetz examines the scalability of the Producer Consumer Queues in the Java
library [GBBT06]. Goetz found that the throughput of the queue is unaffected by
the number of producers and consumers using it. We also found that the number

of processors accessing a queue did not make any difference to its throughput.

6.3.11 Progress

Non-blocking algorithms are preferable to blocking algorithms because they offer a
progress guarantee, whereas blocking algorithms do not. Even a non-blocking al-
gorithm that performs less well than its blocking counterpart is preferable because
the non-blocking algorithm guarantees progress, whereas its blocking counterpart
has the potential to block indefinitely.

A lock-free queue may suffer from the progress pathology of live-lock. This
occurs when two processors repeatedly prevent each other from successfully ac-

cessing the queue. In practice, our queue is unlikely to suffer from this pathology

202 CHAPTER 6. CONTENTION MANAGEMENT

because the Time Stamp Ordering concurrency control protocol ensures that one
or other of the conflicting access functions takes precedence.

In practice, a Producer Consumer Queue is so simple and Chip Multi-Processors
are so reliable that the lack of a progress guarantee makes little difference once the
concurrent application is tested and shown to be working. However, programmers
do not always get things right first time. During the development of a concurrent
application a strong progress guarantee often makes the difference between an
application that does not work correctly and one that requires a system restart

to resolve dead-lock.

6.4. DISTRIBUTION AND SCHEDULING 203

6.4 Distribution and Scheduling

The benefits of concurrent execution come at the cost of distributing and schedul-
ing work and detecting any conflicts. In a Transactional Memory system the
scheduler is regarded as a component of the transaction manager. This section
describes how the scheduling problem can be reduced to one of load-balancing
concurrent execution. A two-level scheduler intended for a parallel workload can
be utilised to load-balance concurrent execution.

The overhead associated with distributing parallel work on a Chip Multi-
Processor is high and for many workloads the overhead of distribution exceeds
the benefit of parallel execution. The overhead associated with distributing and
scheduling concurrent Memory Transactions is significantly higher than that as-
sociated with distributing a similar amount of parallel work because of the addi-
tional effort required to ensure correct concurrent execution.

The main contribution of this section is observation that, once isolation and
progress pathologies have been eliminated, the problem of scheduling Memory
Transactions is similar to that of distributing parallel work. This section focuses

on using an existing two-level scheduler to schedule Memory Transactions.

6.4.1 Scheduling

Transactional Memory systems implement transaction scheduling strategies that
do not make a distinction among the transaction management tasks of concur-
rency control, contention management and load-balancing.

Transactional Memory systems may try to improve the efficiency of concur-
rency control by scheduling transactions to avoid conflicts and reduce the over-
head of wasted work. These benefits should be balanced against the scalability
restrictions of centralised concurrency control.

Transactional Memory systems that make weak progress guarantees may sched-
ule transactions to avoid progress pathologies. The benefits of guaranteed progress
should be balanced against the scalability restrictions of centralised contention
management.

A Transactional Memory system should execute a workload that is known
not to contain conflicting tasks without incurring the overhead of concurrency
control.

The problem of scheduling parallel work on a Chip Multi-Processor is solved

204 CHAPTER 6. CONTENTION MANAGEMENT

by using a two-level scheduler.
Section 6.4.3 describes the scheduling of parallel work on a Chip Multi-Processor.

The overhead of scheduling work on a parallel system imposes a lower limit
on the size of chunks of work that are worthwhile scheduling and the additional

overhead of concurrency control raises this limit further.

Section 6.4.5 describes how these limits influence the design of a transactional

system.

An access function of an Immutable Data Structure is responsible for concur-
rency control, which alleviates the need for centralised concurrency control, and
it also guarantees progress, which alleviates the need for centralised contention
management. The only transaction management task that requires centralisation

is scheduling.

A solution to the scheduling problem should isolate and simplify the schedul-
ing component of transaction management and make it compatible with mecha-

nisms for distributing parallel work.

6.4.2 Load-balance

The task of scheduling transactions can be simplified to the point that it is similar
to that of load-balancing parallel work. This proposal satisfies the requirements
because it isolates the scheduling task and provides a mechanism for scheduling

tasks which are known not to conflict.

The overheads associated with scheduling concurrent work to reduce conflicts
are difficult to justify through increased speed-up because scheduling around con-

flicts requires a centralised transaction manager and this restricts scalability.

The overheads associated with scheduling concurrent work to ensure progress
are difficult to justify through increased speed-up because scheduling transactions
to ensure progress requires a centralised view of contention management and this

restricts scalability.

When these requirements are removed the problem of scheduling is reduced
to one of load-balancing. If it is known that there are no dependencies between
access functions then a parallel work scheduler can schedule them to be executed

in parallel without the overhead of concurrency control.

6.4. DISTRIBUTION AND SCHEDULING 205

The execution of an access function may be regarded as a Memory Trans-
action. The access functions of an Immutable Data Structure implement a dis-
tributed transaction manager internally. When a conflict is detected the trans-
action manager schedules the transaction for re-execution by adding it to the
work-list of the scheduler.

The validate and meld functions are used to implement concurrency control in
a Canonical Binary Tree. These functions can be wrapped by the functions which
implement an ADT so a function acting on an Immutable Data Structure can
be regarded as a chunk of work that can be scheduled by a two-level scheduler.
If the validate function fails then the version of the Immutable Data Structure
created by the function is discarded and the function may be re-tried. Re-try is

implemented by placing the chunk of work back on the work-list.

6.4.3 Scheduling parallel work

The science of High Performance Computing focuses on the parallel execution of
programs on supercomputers. Its main application is in the simulation of physical
systems which evolve over time. Dowd provides a general introduction to High
Performance Computing [Dow93]. Kumar describes how schedules for executing
parallel work can be determined statically, by the analysis of parallel algorithms
[KGGK94]. Parallel algorithms focus on orchestrating the execution of discrete
units of work which can be performed in parallel.

The scheduling of parallel work on a Chip Multi-Processor is different from
orchestrating parallel work on a supercomputer. Chip Multi-Processors generally
have a lower number of processors than Supercomputers and each processor shares
a common cache and a common path to main memory. The effects of caching
mean that the tasks scheduled on separate execution units affect each other in
ways that are difficult to predict. Mattson describes common parallel applica-
tion design patterns, which are very different from those of High Performance
Computing [MSMO04].

The problem of scheduling parallel work on a Chip Multi-Processor cannot
be addressed by static analysis of algorithms alone, so parallel work should be
marshalled and load-balanced by a dynamic scheduler. A two-level scheduler
implements a dynamic scheduling algorithm for parallel work. Two-level sched-
ulers are designed to permit parallel workloads, such as the simulation of physical

systems, to be efficiently executed by a Chip Multi-Processor.

206 CHAPTER 6. CONTENTION MANAGEMENT

Blumofe introduces CILK which is a two-level scheduling system for parallel
workloads [BJKT96]. CILK implements a run-time scheduler which frees the
programmer from static scheduling considerations. The programmer specifies
chunks of work which can be performed in parallel by describing them using the
CILK programming language. The chunks are assigned to processors by the high-
level scheduler. The low-level scheduler marshalls the chunks to be performed by
a particular processor.

The CILK scheduler implements a scheduling policy called work stealing. The
low-level scheduler maintains a queue of chunks to be executed. It removes a
chunk of work from the front of the queue and executes it. When the queue
is exhausted the low-level scheduler steals chunks from the back of a queue be-
longing to another thread. This makes the scheduling task scalable, because the
centralised high-level scheduler is only involved in the initial assignment of the
chunks to the queues of each processor.

Intel’s Threading Building Blocks product [Int09] is a parallel programming
solution for Chip Multi-Processors. Threading Building Blocks applications are
written in the C++ programming language and the Threading Building Blocks
product is implemented as a library which is linked with the application. The
product includes a two-level work stealing scheduler which dynamically schedules
chunks of work provided to it on a work-list. This scheduler is similar to that
provided by CILK. However, Threading Building Blocks frees the programmer
from having to learn a new programming language in order to make use of a
two-level scheduler. Reinders provides an accessible introduction to the features
of the Threading Building Blocks product [Rei07].

6.4.4 Previous work

Ansari proposes a scheduling technique called Dynamic Transactional Reordering
[ALK™09]. This technique reduces wasted work by re-trying conflicting transac-
tions serially so that they do not repeatedly conflict. It also attempts to avoid
both isolation and progress pathologies by implementing a transaction aware work
stealing scheduler.

Ansari proposes a scheduling technique based on using information obtained
by profiling transactional applications [AJKT09]. Profiling information can be
used as input to a scheduler which anticipates conflicting transactions and sched-

ules them to execute serially. Ansari notes that the speed-up obtained by reducing

6.4. DISTRIBUTION AND SCHEDULING 207

wasted work does not always overcome the scheduling overheads.

The high overhead associated with the distribution and scheduling of parallel
work can be contrasted with the low overhead of scheduling Memory Transac-
tions assumed in the Transactional Memory literature. Warg describes how the
overhead of thread creation prevents fine grained speculative execution on a Chip
Multi-Processor from being worthwhile [WS01]. However, some studies of specu-
lative execution assume that the time required to create and schedule a thread is
lower than the access time to the first level cache. Quinones describes an infras-
tructure for speculative execution which assumes a thread creation time of ten
clock cycles [QuMS™05].

6.4.5 Transaction granularity

The overhead of scheduling concurrent work places a lower bound on the gran-
ularity of transactions that are worthwhile scheduling. Transaction granularity
influences many aspects of Transactional Memory system design. Assumptions
about transaction granularity influence the style of transactional programming
a system permits. For example, at a fine level of transaction granularity it is
possible for a compiler to analyse the instructions within a Memory Transaction,
whereas at a coarser level of granularity the compiler is less able to reason about
the execution.

At a fine level of transaction granularity the amount of speculative state pro-
duced by a Memory Transaction is small and the probability that transactions
conflict is small, so the amount of work wasted when a conflict is detected is
small and the likelihood of work being wasted is low. However, at a coarse level
of transaction granularity large amounts of speculative state are produced and
the probability of conflict is high, so the amount of work wasted when a conflict
is detected is large and the likelihood of work being wasted is high.

To make use of a two-level scheduler the programmer divides an application
into chunks of work that are large enough to be worthwhile scheduling. If the
chunks are too small then the overheads associated with scheduling each chunk
can outweigh the benefits of executing it in parallel with other chunks. If the
chunks are too large then the scheduler may not be able to load-balance the work
evenly among processors. In practice, it is often difficult to divide an application
into suitably sized chunks because it is the expected execution time that deter-

mines chunk size. The execution time of the chunks is typically dominated by

208 CHAPTER 6. CONTENTION MANAGEMENT

the latency of cache misses, which are difficult to predict.

The overhead of scheduling concurrent work is high. Threading Building
Blocks requires that a chunk of work should contain at least 10,000 instructions
[Int09]. The documentation does not define an instruction in this context but
assuming that an instruction completes each cycle, a chunk of work should have an
elapsed execution time of at least 10,000 clock cycles to be worthwhile scheduling.
In practice, it is difficult to divide an application into transactions which take at
least 10,000 clock cycles to execute.

The number of clock cycles required to perform a data structure access is nor-
mally dominated by the latency of cache misses. Jacob found that the latency of
a single cache miss is around 200 clock cycles and that the latency of consecutive
cache misses to dis-contiguous locations is considerably longer [Jac09]. A func-
tion acting on a large memory resident data structure may require thousands of
clock cycles to execute so functions that access a data structure are potentially

worthwhile scheduling for concurrent execution.

Chapter 7

Conclusion

7.1 The flow of time

The concurrency problem makes it difficult to write a program that executes
efficiently on a Chip Multi-Processor. This problem arises because information
cannot pass instantly between the processors so each has a different view of the
flow of time. Multi-Processor Systems that treat the flow of time as a global
phenomenon are difficult to program, prone to pathologies and do not scale well,
whereas those that treat time as a local phenomenon have intuitive concurrent
semantics, freedom from progress pathologies and few barriers to scalability.
Our commonsense notion of time is that it flows and that some changes are
simultaneous while others form an ordered sequence and it is a global phenomenon
experienced everywhere in the same way. In this section we consider whether it
is necessary or desirable to enforce this commonsense notion of the flow of time

on a concurrent system.

7.1.1 The notion of the flow of time as a global phe-

nomernon
Concurrent systems attempt to impose a global view of the flow of time by en-
forcing a global ordering on state transitions and by preventing simultaneity.
Speculation about global state transitions

As time passes, events that were once in the future occur in the present moment

and are then relegated to the past. The present moment is the temporal boundary

209

210 CHAPTER 7. CONCLUSION

between the uncertain future and the fixed past. This notion is referred to as the

passage of time.

In a uni-processor system the present moment in time is represented by the
state of memory. However, there is no global present moment in a Multi-Processor

System because information cannot pass instantly between processors.

In a Transactional Memory system speculation centres on the future state of
shared memory. The speculation is that a putative future state created in isolation
does not conflict with any other putative state created by another processor.
Transactional Memory systems weaken isolation to facilitate value sharing and
transactional composition and this blurs the boundary between speculative and

committed state making it difficult to impose a global present moment.

The difficulty of imposing a global temporal boundary between speculative

and shared state is the source of the complex semantics of concurrent systems.

Preventing simultaneity

Simultaneous state transformations must appear simultaneous to all observers.

This notion is referred to as absolute simultaneity.

In a uni-processor system the lack of coherence between components in the
memory hierarchy goes unnoticed by the application. However, in a Multi-
Processor System it is difficult to guarantee that state transformations, that may
appear simultaneous to an application executing on some processors, appear si-

multaneous to all processors.

Mutual exclusion prevents processors from simultaneously accessing the same
memory location by blocking the execution of some processors, but this obstructs

progress and is the source of progress pathologies.

A Transactional Memory system prevents processors from simultaneously ac-
cessing the same memory location by ensuring that only one of the conflicting
transactions succeeds. To achieve this the system must maintain both the specu-
lative and a committed version of the same memory location which increases the

effective memory bandwidth of the application.
The difficulty of imposing absolute simultaneity is a source of both the progress
pathologies and the high memory bandwidth requirement of concurrent applica-

tions.

7.1. THE FLOW OF TIME 211

Enforcing a global ordering on state transitions

Events form a uni-directional sequence in time which is a consequence of the
second law of thermodynamics. The arrow of time denotes an asymmetry between

the future and the past that imposes a global ordering on state transformations.

In a uni-processor system successive states of memory form a uni-directional
sequence, so execution can be seen as an ordered sequence of state transitions.
However, there is no global ordering of state transformations in a Multi-Processor

System because information cannot pass instantly between its components.

A Transactional Memory system implements a concurrency control protocol
to impose a global order on state transitions so that their effect on shared state
is equivalent to a serial execution. A centralised transaction manager is required

to impose a global ordering and this restricts scalability.

The difficulty of imposing a global ordering on state transitions is the source

of the scaling restrictions on concurrent systems.

Memory Transactions are not like database transactions

Few people in the computer architecture community believe that strong mod-
els of memory consistency are scalable. Modern Chip Multi-Processors impose
neither the concept of a global present moment nor the concept of absolute si-
multaneity, except when processing instructions with associated memory barriers.
Weakly consistent memory models, such as total store ordering, remove the need
to impose a global ordering of events [AG95]. However, most database systems
implement strong consistency models and many people in the database commu-
nity believe that a global ordering of events is essential for programmers to write
concurrent programs. Imposing a global view of the flow of time is the primary

purpose of the transaction manager in a database system [GR93].

Transactional Memory has inherited the idea that a framework for speculative
execution must impose a commonsense notion of the flow of time. The idea is so
pervasive that few have questioned it. The conclusion of this thesis is that it is
neither necessary nor desirable to enforce a global view of the flow of time on a

concurrent system.

212 CHAPTER 7. CONCLUSION

7.1.2 The notion of the flow of time as a local phenomenon

This thesis proposes that a Multi-Processor System should treat the flow of time
as a local phenomenon because information cannot pass instantly from one place
to another. A local notion of time does not invoke the concept of a global present
moment and only requires that simultaneity is relative and that events and ob-
servations are only ordered in relation to each other.

Davies provides an accessible introduction to the distinction between a local

and a global concept of the flow of time [Dav(2].

Speculation about events and observations

If we accept that the passage of time is a local phenomenon affecting events
and observations rather than states then there is no global present moment and
speculation can be restricted to events and their observation.

This thesis describes a concurrent system in which there is no concept of a
global present moment separating the past from the future. When this concept
is removed speculation can centre on events and their observation, rather than
about states. The speculation is that an event does not change an observation
that has already been made. When speculation is restricted to events it is not
necessary to impose a global temporal boundary between speculative and shared
state.

The access functions of a Transactional Data Structure execute speculatively
and the speculation is that the execution of the access function does not affect
any value that has already been returned to the application. The concurrent
semantics of the access functions of a Transactional Data Structure are intuitive
because the functions acting on the Transactional Data Structure are strongly
isolated from each other and their effects on the structure are strictly serialisable.

By speculating about events and observations affecting a single object con-

current systems with intuitive concurrent semantics can be constructed.

Permitting simultaneity

If we accept that simultaneity is relative, and that events that occur at the same
moment in time when observed from one frame of reference may occur at different
moments if viewed from another, then there is no requirement to either restrict

simultaneity or to enforce it.

7.1. THE FLOW OF TIME 213

This thesis describes a concurrent system in which simultaneity is relative and
this differs from a system that restricts or enforces simultaneous state transitions.
When simultaneity is relative it is neither necessary to ensure that a mutation is
observed simultaneously by all processors nor prevent multiple processors from
simultaneously accessing the same object.

The access functions of a Transactional Data Structure permit simultaneous
access to data because that data is immutable. Immutable data is timeless and
it can be simultaneously accessed by multiple processors safely. Immutable data
is written just once so speculation does not increase the memory bandwidth of
the application. The access functions of a Transactional Data Structure do not
restrict simultaneous events by blocking the execution of another processor so
they do not restrict progress and are not prone to progress pathologies.

By accepting that simultaneity is relative it is possible to construct a concur-
rent program that is free from progress pathologies and that does not have an

increased memory bandwidth requirement when executing on multiple processors.

Speculation about a local order of events

If we accept that the arrow of time is a local phenomenon referring to the rela-
tionship between an event and its observation then there is no concept of a global
ordering of events so order can be enforced locally.

This thesis describes a concurrent system which imposes a local ordering on
the events affecting a particular object and this differs from the imposition of
a global ordering on state transitions. A locally serialisable ordering of events
affecting a particular object can be ensured by making that object linearizable.

The access functions of a Transactional Data Structure enforce an ordering
on the events that affect the data structure. A concurrent system that does not
impose a global ordering of events lends itself to a distributed implementation
and permits scalability.

By implementing distributed concurrency control it is possible to construct a

scalable concurrent system.

214 CHAPTER 7. CONCLUSION

7.2 Making scalable concurrent programs easier

to write

This thesis proposes that pure functions, immutable data and Memory Trans-
actions can be combined to create a programming model that makes scalable
concurrent programs easier to write. It is grounded on the observation that a
scalable concurrent program must be able to interact with an external entity
and it must guarantee progress. It also makes the observation that a scalable
concurrent system must not rely on coherent caches, strong memory models or

centralised transaction management.

Application programmers expect their programs to execute inevitably. How-
ever, a scalable concurrent system must support speculative execution so spec-
ulation must be restricted to the interface with shared state. There are many
ways to present a speculative interface to shared state but familiar ADT's are the
interface that programmers expect, so the design of the shared interface follows

from programmer expectations.

The memory bandwidth of a scalable concurrent application must be inde-
pendent of the number of processors participating in its execution. Engineering
barriers, such as the difficulty of scaling coherent caches, restrict the scalability
of systems that support mutable shared state, so in a scalable concurrent system
shared state must be immutable. There are many ways to implement immutable
data, but Immutable Data Structures based on the Canonical Binary Tree are

the simplest.

Distributed transaction management is scalable, whereas centralised transac-
tion management is not. Programmers must abandon the concept of globally
serialisable state transitions because distributed concurrency control can only en-
sure the correctness of concurrent accesses to individual objects. Linearizability
is a correctness condition for objects which provides behaviour that programmers
expect. Concurrent applications must make strong progress guarantees, because
contention management is not scalable. The requirement that transaction man-
agement must be distributed dictates both the nature of the interface to shared

state and the progress guarantees offered by the application.

Figure 7.1 illustrates how observations about scalable concurrent systems led

to the development of Transactional Data Structures.

7.2. MAKING SCALABLE CONCURRENT PROGRAMS EASIER TO WRITE215

Software Hardware Systems
Engineering Engineering Engineering
Observation Observation Observation
Application must Centralised Centralised
interact with contention management concurrency control
external entity is not scalable is not scalable
Application Strong memory models Coherent caches
execution must are not scalable are not scalable
be inevitable
Speculation must Application must make System must implement
be restricted to strong progress guarntee Distributed concurrency
shared state interface control
Shared state
must be immutable
Shared state must Shared state must
be restricted to be restricted to
Immutable Data Structures Linearizable Objects

Shared state must
be restricted to
Transactional Data Structures

Figure 7.1: Observations about scalable concurrent systems led to the
development of Transactional Data Structures.

These design choices are co-dependent and may be difficult to implement in-
dependently. For example, it is difficult to envisage a concurrent system that im-
plements distributed transaction management efficiently without requiring that
shared state is immutable. Both the strong progress guarantees, required by a
concurrent system that does not implement centralised contention management,
and the appearance of atomic transformations, required by distributed concur-
rency control, are very difficult to implement efficiently unless shared state is

immutable.

216 CHAPTER 7. CONCLUSION

7.3 Future work

Transactional Memory designs are based on a common set of priorities, such as
the support for atomic sections, and approaches, such as centralised transaction
management. We identified seven design decisions that are dependent on these

priorities and examined alternative approaches.

How to interact with entities outside the concurrent system?

A useful concurrent application should be able to interact with external enti-
ties. This thesis explores the idea that the interface to shared state should be
presented to the application as an ADT so that an application program can ex-
ecute inevitably. We have found that developing concurrent applications using
our interface is easier than using atomic sections. However, we did not have the
opportunity to evaluate whether our proposal facilitates external communication
in concurrent systems.

Heterogeneous systems are constructed from communicating components so a
programming model for them must support interaction. Message passing is the
predominant concurrent programming model for embedded systems and in this
model processors do not share state.

We suggest that the use of Transactional Data Structures as a state sharing
mechanism for heterogeneous embedded systems should be investigated.

This thesis originated as an investigation into the use of Transactional Mem-
ory as a state sharing mechanism for embedded Chip Multi-Processors without
coherent caches. The original proposal was that shared state could be maintained
in tightly coupled memory and that distributed concurrency control could be used
to ensure its correctness.

We now suggest that Transactional Data Structures can be used to main-
tain shared state in Chip Multi-Processors without coherent caches and that dis-
tributed concurrency control can be used as an alternative to a cache coherence
protocol.

We suggest that Transactional Memory systems should support database type
transactions in memory rather than atomic sections. However, the choice of
programming interface is fundamental to Transactional Memory design, so we
are not optimistic that there is an evolutionary development path from existing

Transactional Memory systems to concurrent systems that permit an application

7.3. FUTURE WORK 217

to interact freely with external entities.

How to maintain shared state and support speculative execution?

A scalable concurrent system should maintain both shared state and isolated
speculative state without increasing the memory bandwidth requirement of the
application. This thesis explores the idea that both shared state and isolated
speculative state can be maintained in an Immutable Data Structure and that
doing so does not increase the memory bandwidth requirement of the application
because immutable values are written only once. There are many ways to imple-
ment Immutable Data Structures and many optimisations that can be applied to
improve their performance, but we were only able to explore a single approach in
any depth.

The Immutable Data Structure infrastructure developed to support the eval-
uation is both original and interesting. The purpose of the infrastructure is to
support Concurrent Memory Transactions without requiring a centralised trans-
action manager. However, a system that supports Immutable Data Structures
in an imperative programming environment can have uses outside the area of
concurrent programming. For example, data structures that permit backtracking
have many useful applications in combinatorics.

We suggest that the use of Immutable Data Structures in an imperative pro-
gramming environment is a fruitful area of research.

The Canonical Binary Tree permits a separation of the concerns of the data
structure from those of the ADT so that the performance of the data structure
can be optimised independent of the ADT that it implements. The performance
of the access functions of Immutable Data Structures can be improved by using
shallower trees with more children per node. The techniques used to develop the
Canonical Binary Tree could be applied to trees with fast merge functions, such
as binomial heaps, to improve the performance of the meld function.

Section 3.6.5 describes how the Canonical Binary Tree may be optimised by
both reducing the size of the node and reducing the number of nodes accessed by
common operations. We have not had opportunity to implement these optimisa-
tions.

We suggest that the performance of the Canonical Binary Tree implementation
can easily be improved.

It is not necessary to enforce a cache coherency protocol on immutable data.

218 CHAPTER 7. CONCLUSION

However, current Chip Multi-Processor hardware ensures that the entire address
space is cache coherent. When an immutable value is written a cache invalidate
message is sent to all processors unnecessarily. These messages increase the ef-
fective memory bandwidth of the application. Hardware designed specifically to
realise the benefits of immutability might partition memory into non-coherent
regions suitable for maintaining local and immutable data and cache coherent

regions suitable for maintaining the roots of Immutable Data Structures.

We suggest that hardware designed specifically to realise the benefits of im-

mutability can improve the performance of concurrent systems.

Immutable Data Structures consume the memory address space very quickly.
The memory occupied by a leaf of an Immutable Data Structure cannot be re-
turned immediately when it is deleted by the application. Instead, it can be re-
turned when it becomes unreachable. The vertices that cannot be reached from
the root are potential candidates for return but some of these vertices cannot be

returned because they are reachable by tardy functions.

The task of determining whether vertices in an Immutable Data Structure
can be reached and the process of returning them, while the structure is being
accessed, is similar to the task of garbage collection. Jones describes the pro-
cess of garbage collecting managed memories [JL96]. In our implementation the
memory occupied by the vertices of an Immutable Data Structure is returned by
periodically compacting the structure. The return of unreachable values in an

Immutable Data Structure is discussed on our website [Jarl1].

We suggest that the management of immutable memory needs to be improved

before Immutable Data Structure can be used in production software.

We suggest that the use of immutable data in existing Transactional Mem-
ory systems should be investigated. However, the choice of the mechanism for
maintaining shared and speculative state is fundamental to a Transactional Mem-
ory design, so we are not optimistic that there is an evolutionary development
path from existing Transactional Memory systems to concurrent systems that
support speculation without increasing the effective memory bandwidth of the

application.

7.3. FUTURE WORK 219

How to provide access to shared state with intuitive concurrent seman-

tics?

Shared state should present an intuitive interface to an application to make con-
current programming easier. This thesis explores the idea that shared state can be
encapsulated by linearizable objects and that Immutable Data Structures can be
composed by Entanglement. We evaluated this idea by implementing a concurrent
algorithm to determine the minimum spanning tree of a graph. We concluded
that the intuitive concurrent semantics of linearizable objects and Immutable
Data Structures have the potential to make the process of developing concurrent
applications easier. We were able to investigate some of the properties of conflu-
ently persistent data structures during our evaluation of a minimum spanning tree
algorithm, but we did not have opportunity the investigate partially persistent

data structures.

We suggest that the properties of partially persistent Transactional Data

Structures should be investigated.

How to implement concurrency control to guarantee correct concurrent

execution?

A scalable concurrent system should implement distributed concurrency control.
This thesis explored the idea that the Time Stamp Ordering concurrency control
protocol can ensure the serialisability of functions acting simultaneously on an
Immutable Data Structure. We were only able to investigate one of the many
ways of imposing a distributed concurrency control protocol on Memory Trans-
actions. We found that implementing concurrency control locally by serialising
simultaneous accesses to a single object is much easier than implementing cen-

tralised concurrency control.

We suggest that the use of distributed concurrency control in existing Trans-
actional Memory systems should be investigated. However, the choice of the con-
currency control mechanism is fundamental to a Transactional Memory design,
so we are not optimistic that there is an evolutionary development path from
existing Transactional Memory systems to concurrent systems that implement

scalable distributed concurrency control.

220 CHAPTER 7. CONCLUSION

How to implement contention management to eliminate progress patholo-

gies?

Strong progress guarantees alleviate the need for centralised contention manage-
ment. This thesis explored the idea that functions acting on an Immutable Data
Structure can guarantee lock-free progress. We evaluated an implementation of a
non-blocking Producer Consumer Queue and we found that progress pathologies
were eliminated and that centralised contention management was unnecessary.

A scalable concurrent application must make a strong progress guarantee be-
cause centralised contention management is not scalable, but non-blocking algo-
rithms that rely on mutable shared data are difficult to write. We found that the
development of non-blocking algorithms is made easier by requiring that shared
data is immutable.

We suggest that non-blocking algorithms that focus on immutable data should

be investigated.

How to marshall work and schedule concurrent execution?

A scalable concurrent system has few scheduling requirements. This thesis ex-
plores the idea that the responsibility of the scheduler should be restricted exclu-
sively to that of load-balancing concurrent work and that a scheduler intended
for a parallel workload can be used to schedule Memory Transactions. During
our evaluation of a Producer Consumer Queue we used a parallel scheduler and
found that it was both easy to use and effective.

A system which makes the distinction between a parallel workload, in which
conflicts are statically known not to occur, and a concurrent workload, in which
conflicts are detected dynamically, is not generally useful as both types of work-
load occur in a typical application. A concurrent programming solution should
be capable of scheduling an application containing both parallel and concurrent
work.

We suggest that schedulers intended for parallel work should be used to permit
workload flexibility in concurrent systems.

Functional programming permits concurrent execution because it supports
both parallelism and speculation. However, the problem of dynamically load-
balancing parallel execution remains to be solved. Immutable Data Structures in

the form of purely functional data structures are widely used in the expression of

7.3. FUTURE WORK 221

a functional program but they could also be used to maintain the abstract syntax
tree of a functional program during its execution.

We suggest that the use of Immutable Data Structures as a potential solution
to the dynamic load-balancing problem in functional programming should be

investigated.

How to integrate a concurrent programming solution into the software

development cycle?

A concurrent programming solution should make it economically viable to develop
concurrent applications. This thesis explores the idea that concurrent applica-
tions can be developed using conventional imperative languages, compilers and
tools so as to minimise the impact on existing software and methodologies. We
found that, by focusing on the shared state interface and developing concurrent
applications, rather than transactional systems, we were able to restrict the lo-
cality of changes to those routines that benefit most from concurrent execution.

We suggest that a C++ STL compatible user interface for Immutable Data
Structures should be developed so that programmers can easily integrate these

structures into existing concurrent applications.

222 CHAPTER 7. CONCLUSION

7.4 Summary

“The overarching goal | of parallel programming research | should be to make
it easy to write programs that execute efficiently on highly parallel computing
systems” [ABC106].

We observed that a concurrent program must execute inevitably in order to
communicate, so speculative execution must be restricted to the interface with
shared state. Neither coherent caches nor strong models of memory consistency
scale, so shared state must be immutable. Centralised concurrency control re-
stricts scalability, so a scalable concurrent program must implement distributed
concurrency control, and centralised contention management restricts scalability,
so a scalable concurrent program must guarantee progress.

These observations indicate that scalable concurrent programs are confined to
sharing only immutable data and that scalable concurrent systems are bound to
ensure the correctness of concurrent execution on a per object basis.

We conjectured that a concurrent program that shares only immutable data
and which executes in a system which implements distributed concurrency control
will be both easier to write and more scalable than an equivalent program that
uses mutual exclusion.

We proposed Transactional Data Structures which are an interface to shared
state that permit strongly isolated speculation while allowing programs to exe-
cute inevitably. Transactional Data Structures do not rely on coherent caches
or strong memory consistency models, they are compatible with existing soft-
ware and software development processes, they require only localised changes to
performance critical regions of existing programs and they facilitate the sharing
of immutable data while ensuring correct concurrent execution and guaranteeing
progress.

We evaluated our proposal and concluded that the use of Transactional Data
Structures facilitates both the development of scalable check pointing algorithms
and the construction of simple non-blocking algorithms.

Further research is required before we can determine whether Transactional
Data Structures will make it easy to write programs that execute efficiently on
highly parallel computing systems, but the work we have done so far seems to
indicate that they will.

Bibliography

[ABC*06]

[AF92]

[AFS08]

[AG95]

[AJK*09]

[ALK*09]

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Pat-
terson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. The landscape of parallel computing re-
search: A view from berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Decem-
ber 2006.

Juan Allemany and Ed Felten. Performance issues in non-blocking
synchronization on shared-memory multiprocessors. In Proceedings
of the 11th ACM Symposium on Principles of Distributed Comput-
ing, pages 125-134. ACM Press, August 1992.

Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested par-
allelism in transactional memory. In PPoPP °08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 163-174, New York, NY, USA, 2008.
ACM.

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. IEEE Computer, 29:66-76, 1995.

Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Lujan,
Chris Kirkham, and Ian Watson. Profiling transactional memory
applications. In PDP ’09: Proceedings of the 17th Euromicro In-
ternational Conference on Parallel, Distributed, and Network-based

Processing. IEEE Computer Society Press, February 20009.

Mohammad Ansari, Mikel Lujan, Christos Kotselidis, Kim Jarvis,
Chris C. Kirkham, and Tan Watson. Steal-on-abort: Improving

223

224

[Amd67]

[AMO93]

[AN95]

[And93]

[And09]

[ArmO07]

[ARTO0S]

[Bag01]

[BBB106]

BIBLIOGRAPHY

transactional memory performance through dynamic transaction re-
ordering. In High Performance Embedded Architectures and Com-
pilers, Fourth International Conference, pages 4—18, 2009.

Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In AFIPS 67 (Spring):
Proceedings of the April 18-20, 1967, spring joint computer confer-
ence, pages 483485, New York, NY, USA, 1967. ACM.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work flows: theory, algorithms, and applications. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1993.

Arne Andersson and Stefan Nilsson. Efficient implementation of
suffix trees. Softw. Pract. Fxper., 25:129-141, February 1995.

Arne Andersson. Balanced search trees made simple. In WADS
'93: Proceedings of the Third Workshop on Algorithms and Data
Structures, pages 60-71, London, UK, 1993. Springer-Verlag.

Mark Anderson. Sun can kill rock, but not its memory tech. IEFEFE
Spectr., June 2009.

Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, 2007.

Adl-Tabatabai Ali-Reza and Xinmin Tian. The intel software trans-
actional memory compiler.
http://software.intel.com/file/8097, November 2008.

Phil Bagwell. Ideal Hash Trees. PhD thesis, Department of Com-

puter Science, Ecole Polytechnique Federale de Lausanne, 2001.

David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr,
Doug Lea, Tom May, Jan-Willem Maessen, Jeremy Manson,
John D. Mitchell, Kelvin Nilsen, Bill Pugh, and Emin Gun Sirer.
The ”double-checked locking is broken” declaration.
http://www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html, 2006.

http://software.intel.com/file/8097
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

BIBLIOGRAPHY 225

[BBG+95]

[BGH*06]

[BHO1]

[BHGS7]

[BJK+96]

[Ble96]

[BM72]

[BMT+07]

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A critique of ANSI SQL isolation levels.
SIGMOD Rec., 24:1-10, May 1995.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In OOPSLA °06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-Oriented Programing,
Systems, Languages, and Applications, pages 169-190, New York,
NY, USA, October 2006. ACM Press.

Cuneyt F. Bazlamacci and Khalil S. Hindi. Minimum-weight span-
ning tree algorithms a survey and empirical study. Computers &
Operations Research, 28(8):767 — 785, 2001.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an

efficient multithreaded runtime system. J. Parallel Distrib. Comput.,
37(1):55-69, 1996.

Guy E. Blelloch. Programming parallel algorithms. Commun. ACM,
39:85-97, March 1996.

Rudolf Bayer and Edward M. McCreight. Organization and main-
tenance of large ordered indexes. Acta Informatica, 1(3):173-189,
February 1972.

Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos

226

[(BMV+07]

[Bro08]

[CBM+08]

[CCE*09]

[CF08]

[CGEOS]

[Cha00]

BIBLIOGRAPHY

Kozyrakis, and Kunle Olukotun. The openTM Transactional Appli-
cation Programming Interface. In Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Tech-
niques, PACT ’07, pages 376-387, Washington, DC, USA, 2007.
IEEE Computer Society.

Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D.
Hill, Michael M. Swift, and David A. Wood. Performance patholo-
gies in hardware transactional memory. In Proceedings of the 34rd
Annual International Symposium on Computer Architecture. Inter-

national Symposium on Computer Architecture, pages 81-91, 2007.

Neil Brown. Communicating Haskell Processes: Composable Ex-
plicit Concurrency Using Monads. In P.H. Welch et al., editor,
Communicating Process Architectures 2008, pages 67-83, 2008.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
Transactional Memory: Why is it only a research toy? Communi-
cations of the ACM, 51(11):40-46, November 2008.

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin
Karlsson, Anders Landin, Sherman Yip, Hakan Zeffer, and Marc

Tremblay. Rock: A high-performance Sparc CMT processor. IFEE
Micro, 29(2):6-16, 2009.

Sylvain Conchon and Jean-Christophe Filliatre. Semi-persistent
data structures. In Proceedings of the Theory and practice of soft-
ware, 17th European conference on Programming languages and sys-
tems, ESOP’08 /ETAPS’08, pages 322-336, Berlin, Heidelberg, 2008.
Springer-Verlag.

Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off
the grass: Locking the right path for atomicity. In CC 08: Proc.
International Conference on Compiler Construction, pages 276-290,
March 2008.

Bernard Chazelle. A minimum spanning tree algorithm with inverse-
ackermann type complexity. J. ACM, 47(6):1028-1047, 2000.

BIBLIOGRAPHY 227

[CMCKOO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle

[Col86]

[CRS05]

[Dav02]

[DDS06]

[DGJe09]

[DL0Y]

[DLMNOY]

[Dow93]

[DSSTS6]

Olukotun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEFE International
Symposium on Workload Characterization, September 2008.

Richard Cole. Searching and storing similar lists. J. Algorithms,
7(2):202-220, 1986.

Joao Cachopo and Antonio Rito-Silva. Versioned boxes as the basis
for memory transactions. In OOPSLA 2005 Workshop on Synchro-
nization and Concurrency in Object-Oriented Languages (SCOOL),
October 2005.

Paul Davies. That mysterious flow. Scientific American, pages 40—
47, September 2002.

O. Shalev D. Dice and N. Shavit. Transactional locking ii. In Proc. of
the 20th International Symposium on Distributed Computing (DISC
2006), pages 194-208, 2006.

Camil Demetrescu, Andrew V. Goldberg, and David S. John-
son (eds.). The Shortest Path Problem: Ninth DIMACS Implemen-
tation Challenge. American Mathematical Society, 2009. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science.

Jack Dongarra and Alexey L. Lastovetsky. High Performance Het-
erogeneous Computing. Wiley-Interscience, New York, NY, USA,
20009.

Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Farly
experience with a commercial hardware transactional memory im-
plementation. In ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 157-168. ACM, March 2009.

Kevin Dowd. High performance computing. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1993.

J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan. Making data
structures persistent. In STOC ’86: Proceedings of the eighteenth

228

[DT92]

[Duf10]

[Enn06]

[FHO7]

[FHSO04]

[FKO03]

[GBB+06]

[GKOS]

(GR92]

[GR93]

BIBLIOGRAPHY

annual ACM symposium on Theory of computing, pages 109-121,
New York, NY, USA, 1986. ACM.

Dorit Dor and Michael Tarsi. Graph decomposition is npc - a com-
plete proof of holyer’s conjecture. In STOC °92: Proceedings of
the twenty-fourth annual ACM symposium on Theory of computing,
pages 252-263, New York, NY, USA, 1992. ACM.

Joe Duffy. A (brief) retrospective on tranasactional memory.

http://www.bluebytesoftware.com, January 2010.

Robert Ennals. Software transactional memory should not be
obstruction-free. Technical Report IRC-TR-06-052, Intel Research
Cambridge Tech Report, January 2006.

Keir Fraser and Tim Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25, May 2007.

Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weak-
ness of conditional synchronization primitives. In Proceedings of the

23rd Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 80-87. ACM Press, 2004.

Amos Fiat and Haim Kaplan. Making data structures confluently
persistent. J. Algorithms, 48(1):16-58, 2003.

Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David
Holmes, and Tim Peierls. Java Concurrency in Practice. Addison-

Wesley Longman, Amsterdam, 2006.

Rachid Guerraoui and Michat Kapatka. On obstruction-free trans-
actions. In SPAA ’08: Proc. twentieth annual symposium on Paral-

lelism in algorithms and architectures, pages 304-313, June 2008.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1992.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1993.

http://www.bluebytesoftware.com

BIBLIOGRAPHY 229

[Gra02]

[GST8]

[GT09]

[GZU*09]

[HCW+04]

[Her8g]

[Her08]

[Hic11]

[HKO8]

Steve Graves. In-memory database systems. Linuz J., 2002:10-,
September 2002.

Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework

for balanced trees. In FOCS, pages 8-21. IEEE, 1978.

Michael T. Goodrich and Roberto Tamassia. Algorithm Design:
Foundations, Analysis and Internet Examples. John Wiley & Sons,
Inc., New York, NY, USA, 2nd edition, 2009.

Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrian
Cristal, Eduard Ayguade, Tim Harris, and Mateo Valero. Quaketm:
parallelizing a complex sequential application using transactional
memory. In ICS ’09: Proceedings of the 23rd international confer-
ence on Supercomputing, pages 126-135, New York, NY, USA, 2009.
ACM.

Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg,
Mike Chen, Christos Kozyrakis, and Kunle Olukotun. Programming
with transactional coherence and consistency (tcc). In ASPLOS-
XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages 1—
13. ACM Press, October 2004.

Maurice P. Herlihy. Impossibility and universality results for wait-
free synchronization. In PODC ’88: Proceedings of the seventh an-
nual ACM Symposium on Principles of distributed computing, pages
276290, New York, NY, USA, 1988. ACM.

Maurice Herlihy. Linearizability. In FEncyclopedia of Algorithms.
Springer, 2008.

Rich Hickey. Clojure concurrency (video). http://blip.tv/file/
812787, January 2011.

Maurice Herlihy and Eric Koskinen. Checkpoints and continuations
instead of nested transactions. In TRANSACT ’08: 3rd Workshop
on Transactional Computing, February 2008.

http://blip.tv/file/812787
http://blip.tv/file/812787

230

[HLMS03]

[HLR10]

[HMO3]

[HMO7]

[HMO8]

[HMPJHO5]

[Hoa83]

[HPO5]

[HPO6)

[HPSTO6]

BIBLIOGRAPHY

Maurice Herlihy, Victor Luchangco, Mark Moir, and William
Scherer. Software transactional memory for dynamic-sized data
structures. In PODC' °03: Proc. 22nd ACM Symposium on Princi-
ples of Distributed Computing, pages 92-101, July 2003.

Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-
ory, 2nd edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2010.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings of
the 20th Annual International Symposium on Computer Architec-

ture, pages 289-300, May 1993.

Pieter Hartel and Henk Muller. Functional C. Addison Wesley
Longman, April 1997.

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. [IEEE COMPUTER, 2008.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. Composable memory transactions. In PPoPP ’05: Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 48-60, New York, NY, USA, 2005.
ACM.

C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 26:100-106, January 1983.

R Hinze and R Paterson. Finger trees: a simple general-purpose
data structure. J. Funct. Prog., 16(02):197-217, 2005.

John L. Hennessy and David A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2006.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi.
Optimizing memory transactions. In Proceedings of the 2006 Con-

ference on Programming language design and implementation, pages

14-25. ACM Press, June 2006.

BIBLIOGRAPHY 231

[HSO08]

[HW90]

[Int07]

[Int09]

1S092]

[Jac09]

[Jarl1]

[JBR10]

[JL96]

[Jos99]

[KAJ*07]

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463-492, 1990.

Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual - Volume 3B, August 2007.

Intel. Intel Threading Building Blocks: Programming for Current
and Future Multicore Platforms. IEEE/ACM International Sympo-

sium on Code Generation and Optimization, July 2009.
ISO. SQL Specification. 1SO, 1992.

Bruce L. Jacob. The Memory System: You Can’t Avoid It, You
Can’t Ignore It, You Can’t Fake It. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009.

Kim Jarvis. Transactional Data Structures.

http://transactionalmemory.com, June 2011.

Tim Harris Jayaram Bobba, Mark Hill and Ravi Rajwar. The
transactional memory bibliography. http://www.cs.wisc.edu/

trans-memory/biblio/index.html, June 2010.

Richard Jones and Rafael Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons,
1996.

Nicolai M. Josuttis. The C++ Standard Library: A tutorial and
reference. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Lujan,
Chris Kirkham, and Ian Watson. Designing a distributed software
transactional memory system. In ACACES ’07: 3rd International
Summer School on Advanced Computer Architecture and Compila-
tion for Embedded Systems, July 2007.

http://transactionalmemory.com
http://www.cs.wisc.edu/trans-memory/biblio/index.html
http://www.cs.wisc.edu/trans-memory/biblio/index.html

232

[KAJ*08]

[Kap04]

[Kar05]

[KB09)]

[KGGK94]

[KHLW10]

[Kri03]

[LAOA]

[Lam97]

BIBLIOGRAPHY

Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Lujan,
Chris Kirkham, and Ian Watson. Distm: A software transactional
memory framework for clusters. In ICPP ’08: Proceedings of the
37th IEEE International Conference on Parallel Processing. IEEE
Computer Society Press, September 2008.

Haim Kaplan. Persistent data structures. In Handbook Of Data
Structures And Applications. Chapman & Hall/CRC, 2004.

Bjorn Karlsson. Beyond the C++ Standard Library, an introduction
to Boost. Addison-Wesley Professional, 2005.

Seunghwa Kang and David A. Bader. An efficient transactional

memory algorithm for computing minimum spanning forest of sparse

graphs. In PPOPP, pages 15-24, 2009.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.
Introduction to parallel computing: design and analysis of algo-
rithms. Benjamin-Cummings Publishing Co., Inc., Redwood City,
CA, USA, 1994.

Behram Khan, Matthew Horsnell, Mikel Lujan, and Ian Watson.
Scalable object-aware hardware transactional memory. In Proceed-
ings of the 16th international Euro-Par conference on Parallel pro-
cessing: Part I, EuroPar’10, pages 268-279, Berlin, Heidelberg,
2010. Springer-Verlag.

S. Krishnaprasad. Concurrent/Distributed programming illustrated
using the dining philosophers problem. J. Comput. Small Coll.,
18:104-110, April 2003.

Sean Lie and Krste Asanovic. Hardware support for unbounded

transactional memory. Technical report, Masters thesis, MIT, 2004.

Leslie Lamport. How to make a correct multiprocess program

execute correctly on a multiprocessor. IEEE Trans. Comput.,

46(7):779-782, 1997.

BIBLIOGRAPHY 233

[Lea06]

[Lom77]

[Mar08]

[MBLOG]

[MBM™*06]

[MHO6]

[Mor68]

[Mos99]

[MPAOS5]

IMSMO4]

[NMAT+07]

Douglas Lea. Concurrent Programming in Java(TM): Design
Principles and Patterns (3rd Edition) (Java (Addison-Wesley)).
Addison-Wesley Professional, 2006.

D. B. Lomet. Process structuring, synchronization, and recovery
using atomic actions. SIGPLAN Not., 12(3):128-137, 1977.

Petru Marginean. Lock-free Queues. Dr. Dobb’s Journal, July 2008.

Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transac-
tional memory atomicity semantics. IEEE Comput. Archit. Lett.,
5:17—, July 2006.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill, and David A. Wood. LogTM: Log-based Transactional Mem-
ory. In HPCA, pages 254-265, 2006.

J. Eliot B. Moss and Antony L. Hosking. Nested transactional
memory: model and architecture sketches. Sci. Comput. Program.,
63(2):186-201, 2006.

Donald R. Morrison. Patricia - practical algorithm to retrieve infor-
mation coded in alphanumeric. J. ACM, 15(4):514-534, 1968.

Graeme E. Moss. Benchmarking purely functional data structures.
Journal of Functional Programming, 11:525-556, 1999.

Jeremy Manson, William Pugh, and Sarita V. Adve. The java mem-
ory model. SIGPLAN Not., 40:378-391, January 2005.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns
for parallel programming. Addison-Wesley Professional, 2004.

Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosk-
ing, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana
Shpeisman. Open nesting in software transactional memory. In
PPoPP ’07: Proc. 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 68-78, mar 2007.

234

[NMNO1]

[Oka98]

[Oka04]

[O1u07]

[OV99]

[Pap79]

[PCSFO08]

[PDC*98]

[PJ8T]

[PJGF96]

BIBLIOGRAPHY

Jaroslav Nesettil, Eva Milkova, and Helena NesSettilovd. Otakar
Bortuvka on Minimum Spanning Tree Problem, translation of both
the 1926 papers. Discrete Math., 233:3-36, April 2001.

Chris Okasaki. Purely functional data structures. Cambridge Uni-
versity Press, New York, NY, USA, 1998.

Chris Okasaki. Purely functional structures. In Handbook Of Data
Structures And Applications. Chapman & Hall/CRC, 2004.

Kunle Olukotun. Chip Multiprocessor Architecture: Techniques to
Improve Throughput and Latency. Morgan and Claypool Publishers,
1st edition, 2007.

M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed
Database Systems, Second Edition. Prentice-Hall, 1999.

Christos H. Papadimitriou. = The serializability of concurrent

database updates. J. ACM, 26:631-653, October 1979.

C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick.
Version Control with Subversion. O'Reilly Media, 2 edition, Septem-
ber 2008.

Allen Parrish, Brandon Dixon, David Cordes, Susan Vrbsky, and
John Lusth. Implementing persistent data structures using C++-.
Softw. Pract. Fxper., 28:1559-1579, December 1998.

Simon L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages (Prentice-Hall International Series in Com-
puter Science). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1987.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concur-
rent Haskell. In POPL °96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
295-308, New York, NY, USA, 1996. ACM.

BIBLIOGRAPHY 235

[PLMWOS]

[Pri57]

[PW10]

[QnMS*05]

[Raj0o2]

[ReeT9]

[Rei07]

[RGO1]

[RHWO09)

Frédéric Pluquet, Stefan Langerman, Antoine Marot, and Roel
Wuyts. Implementing partial persistence in object-oriented lan-
guages. In ALENEX Algorithm Engineering and Exzperiments, pages
37-48, 2008.

R. C. Prim. Shortest connection networks and some generalizations.
Bell System Technology Journal, 36:1389-1401, 1957.

Donald E. Porter and Emmett Witchel. Understanding transac-
tional memory performance. In ISPASS IEEFE International Sym-

posium on Performance Analysis of Systems and Software, pages
97-108, 2010.

Carlos Garcia Quinones, Carlos Madriles, Jesus Sanchez, Pedro
Marcuello, Antonio Gonzalez, and Dean M. Tullsen. Mitosis com-
piler: an infrastructure for speculative threading based on pre-
computation slices. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation,
PLDI 05, pages 269-279, New York, NY, USA, 2005. ACM.

Ravi Rajwar. Speculation-based techniques for transactional lock-
free execution of lock-based programs. PhD thesis, Department of

Computer Science, 2002. Supervisor-Goodman, James R.

David P. Reed. Implementing atomic actions on decentralized data.
In Proceedings of the seventh ACM symposium on Operating systems
principles, SOSP ’79, pages 163—, New York, NY, USA, 1979. ACM.

James Reinders. Intel Threading Building Blocks - Outfitting C++

for multi-core processor parallelism. O’Reilly, 2007.

Ravi Rajwar and James R. Goodman. Speculative lock elision: en-
abling highly concurrent multithreaded execution. In Proceedings of
the 34th annual ACM/IEEE international symposium on Microar-
chitecture, MICRO 34, pages 294-305, Washington, DC, USA, 2001.
IEEE Computer Society.

Christopher Rossbach, Owen Hofmann, and Emmett Witchel. Is

transactional memory programming actually easier? In WDDD °09:

236

[RTD83]

[RW02]

[SATH+06]

[Sch06]

[SCKP07]

[Sed98]

[Sed02]

[Shu0§]

BIBLIOGRAPHY

Proc. 8th Workshop on Duplicating, Deconstructing, and Debunking,
jun 2009.

Thomas W. Reps, Tim Teitelbaum, and Alan J. Demers. Incremen-
tal context-dependent analysis for language-based editors. ACM
Trans. Program. Lang. Syst., 5(3):449-477, 1983.

Algis Rudys and Dan S. Wallach. Transactional rollback for
language-based systems. In Proceedings of the 2002 International

Conference on Dependable Systems and Networks, DSN ’02, pages
439-448, Washington, DC, USA, 2002. IEEE Computer Society.

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. Mcrt-stm: a high performance soft-
ware transactional memory system for a multi-core runtime. In Proc.
11th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP "06), pages 187-197. ACM, March 2006.

William N. Scherer, III. Synchronization and concurrency in user-
level software systems. PhD thesis, Department of Computer Sci-
ence, Rochester, NY, USA, 2006. AAI3204565.

Jaswanth Sreeram, Romain Cledat, Tushar Kumar, and Santosh
Pande. RSTM: A relaxed consistency software transactional memory
for multicores. In PACT °07: Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques,
page 428. IEEE Computer Society, 2007.

Robert Sedgewick. Algorithms in C++, parts 1-4: fundamentals,

data structure, sorting, searching, third edition. Addison-Wesley
Professional, 1998.

Robert Sedgewick. Algorithms in C++, part 5: graph algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

Herb Shutter. Writing Lock-Free Code: A corrected queue. Dr.
Dobb’s Journal, October 2008.

BIBLIOGRAPHY 237

[SLLO1]

[SLS09]

[SRO1]

[SSHT93]

[ST86]

[ST95]

[Sto06]

[Swe06]

[Tar85]

[TMG*09)

[Van09]

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library User Guide and Reference Manual. Addison-Wesley

Professional, December 2001.

William N. Scherer, Doug Lea, and Michael L. Scott. Scalable syn-
chronous queues. Commun. ACM, 52:100-111, May 20009.

Alexandru Salcianu and Martin Rinard. Pointer and escape analysis
for multithreaded programs. SIGPLAN Not., 36:12-23, June 2001.

Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John
Turek. Multiple reservations and the oklahoma update. IEEE Par-
allel Distrib. Technol., 1(4):58-71, 1993.

Neil Sarnak and Robert Endre Tarjan. Planar point location using
persistent search trees. Commun. ACM, 29(7):669-679, 1986.

Nir Shavit and Dan Touitou. Software Transactional Memory. In
Proceedings of the 14th ACM Symposium on Principles of Dis-
tributed Computing, pages 204-213, August 1995.

Jon Stokes. Inside the Machine: An Illustrated Introduction to Mi-
croprocessors and Computer Architecture. No Starch Press, San

Francisco, CA, USA, 2006.

Tim Sweeney. The next mainstream programming language: a game
developer’s perspective. In Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’06, pages 269269, New York, NY, USA, 2006. ACM.

Tarjan, R. E. Amortized computational complexity. SIAM J. Alg.
and Discr. Meth., 6(2):306-318, 1985.

Fuad Tabba, Mark Moir, James R. Goodman, Andrew Hay, and
Cong Wang. NZTM: Nonblocking zero-indirection transactional
memory. In SPAA ’09: Proc. 21st Symposium on Parallelism in
Algorithms and Architectures, August 2009.

Ashlee Vance. Sun is said to cancel big chip project. The New York
Times, June 2009.

238

[VHPNO9)]

[VRVT09]

[VTG+09)]

[WA02]

[Wei93]

[WLS3]

[WMO5]

(WS01]

BIBLIOGRAPHY

Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J.
Narayanan. Fast minimum spanning tree for large graphs on the
gpu. In Proceedings of the Conference on High Performance Graph-
ics 2009, HPG ’09, pages 167-171, New York, NY, USA, 2009. ACM.

Vladimir Cakarevi¢, Petar Radojkovié¢, Javier Verdud, Alex Pajuelo,
Francisco J. Cazorla, Mario Nemirovsky, and Mateo Valero. Charac-
terizing the resource-sharing levels in the UltraSPARC T2 processor.
In Micro-42: Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 481-492, New York,
NY, USA, 2009. ACM.

Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift,
and Adam Welc. xCalls: safe I/O in memory transactions. In
FEuroSys, pages 247-260, 2009.

Michael Widenius and Davis Axmark. MySQL Reference Manual.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1st edition, 2002.

Mark Allen Weiss. Data structures and algorithm analysis in C.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,
1993.

William Weihl and Barbara Liskov. Specification and implementa-
tion of resilient, atomic data types. In SIGPLAN ’83: Proceedings
of the 1983 ACM SIGPLAN symposium on Programming language

issues in software systems, pages 5b3—64, jun 1983.

Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Im-
plications of the obvious. Computer Architecture News, 23:20-24,
1995.

Fredrik Warg and Per Stenstrom. Limits on speculative module-
level parallelism in imperative and object-oriented programs on cmp
platforms. In PACT °01: Proceedings of the 2001 International Con-
ference on Parallel Architectures and Compilation Techniques, pages
221-230, Washington, DC, USA, 2001. IEEE Computer Society.

BIBLIOGRAPHY 239

[WSO8]

[Zim81]

M. M. Waliullah and Per Stenstrom. Intermediate checkpointing
with conflicting access prediction in transactional memory systems.
In IPDPS, IEEFE International Parallel and Distribued Processing
Symposium, pages 1-11, 2008.

Hubert Zimmermann. The ISO reference model for open systems
interconnection. In Kommunikation in Verteilten Systemen, pages

39-57, 1981.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Memory Transactions
	Concurrent Programming
	Design Priorities
	Mutual Exclusion
	Speculative execution
	The development of Transactional Memory
	Software Transactional Memory
	Hardware Transactional Memory
	Ease of programming

	Concurrent Programming
	Concurrent IO
	The interaction with external entities
	The Database Programming Model
	Atomic Sections
	Previous work
	The Client Server Database Model
	Heterogeneous Processors

	Parallelism
	Temporal Uncertainty
	Minimising Temporal Uncertainty
	Functional Dependencies
	Mutable Shared State
	Coordinating Concurrent Actions
	Previous work
	Parallel Execution of Functional Programs
	Speculative Execution of Functional Programs

	Compatibility
	Disruptive changes to existing software
	Compatibility with existing software
	Making concurrent programs easier to write

	Maintaining State
	Speculative State
	The Memory Wall
	Immutable Memory
	Memory Bandwidth
	The effect of speculation
	Moving the bottleneck
	Cache Coherency

	Immutable Data Structures
	Supporting Speculation
	Immutable Data Structures
	Immutability and Concurrency

	Path Copying
	Implementing Immutable Data Structures
	Supporting Concurrent Access
	Path copying transformations
	Previous work

	Binary Trees
	A flexible Immutable Data Structure design
	The Canonical Binary Tree
	Previous work

	Abstract Data Types for Immutable Data
	Priority Queue
	Directed min-tree
	Deque
	Directed deque
	Map
	Interval tree with sentinel
	Vector
	Directed sequence
	Previous work

	Balancing
	Balancing schemes
	Balancing the Canonical Binary Tree
	Previous work
	Utility functions
	Optimisation
	Amortised access time

	Accessing State
	Linearizable objects
	Weak Isolation
	Strong Isolation
	Linearizability
	Previous work
	The semantics of weak isolation
	Isolation pathologies
	Nested Transactions

	Persistent Data Structures
	Accessing Previous Versions
	Persistence
	The classification of persistent data structures
	Previous work
	The classification of Transactional Data Structures

	Entanglement
	Fine grained irregular parallelism
	The composition of Immutable Data Structures
	Entanglement and Persistence
	Previous work
	Low overhead check pointing

	Minimum Spanning Tree
	Experiment
	Results
	Method
	Serial Graph Colouring Implementation
	Serial No-Colouring Implementation
	The concurrent implementation of Prim's algorithm
	Concurrent Graph Colouring Implementation
	Previous work
	Concurrent No-Colouring Implementation
	The performance of the Concurrent No-Colouring Implementation

	Concurrency Control
	Distributed Concurrency Control
	Centralised Concurrency Control
	Distributed Concurrency control
	Transaction Management
	Previous work
	Time Stamp Ordering
	Programmer productivity

	Serialisability
	Simultaneous access
	Implementing Concurrency Control
	Concurrent semantics
	Simultaneous semantics
	Previous work
	Variables
	Functions and operations
	Validation
	Meta-data

	Confluence
	Simultaneous modifications
	Meld Function
	Previous work

	Contention Management
	Progress and Contention Management
	Blocking
	Guaranteed Progress
	The Dining Philosophers
	Previous work

	Non-blocking Algorithms
	Ensuring serialisability without blocking
	Lock-free serialisability
	Previous work
	Non-blocking evaluation

	Producer Consumer Queue
	Experiment
	Results
	Method
	Workload simulation
	Previous work
	Mailbox Queue performance
	Messaging Queue performance
	Ease of implementation
	Ease of programming
	Scalability
	Progress

	Distribution and Scheduling
	Scheduling
	Load-balance
	Scheduling parallel work
	Previous work
	Transaction granularity

	Conclusion
	The flow of time
	The notion of the flow of time as a global phenomenon
	The notion of the flow of time as a local phenomenon

	Making scalable concurrent programs easier to write
	Future work
	Summary

	Bibliography

